This commit is contained in:
bluepython508
2024-03-21 10:25:37 +00:00
parent bd228e9dca
commit 201182156f
4 changed files with 167 additions and 11 deletions

View File

@@ -0,0 +1 @@

View File

@@ -9,6 +9,7 @@
\author{}
\newcommand{\paren}[1]{\left(#1\right)}
\newcommand{\powerset}[1]{\mathbb{P}\paren{#1}}
\renewcommand{\Re}[1]{\operatorname{\mathbb{R}e}\paren{#1}}
\renewcommand{\Im}[1]{\operatorname{\mathbb{{I}}m}\paren{#1}}
\newcommand{\C}{\mathbb{C}}

View File

@@ -9,6 +9,7 @@
\author{}
\newcommand{\paren}[1]{\left(#1\right)}
\newcommand{\powerset}[1]{\mathbb{P}\paren{#1}}
\renewcommand{\Re}[1]{\operatorname{\mathbb{R}e}\paren{#1}}
\renewcommand{\Im}[1]{\operatorname{\mathbb{{I}}m}\paren{#1}}
\newcommand{\C}{\mathbb{C}}

View File

@@ -71,23 +71,23 @@ For sets $X$, $Y$:
\end{description}
For $f: X \to Y$, $A \subseteq A' \subseteq X$, $B \subseteq B' \subseteq Y$:
\begin{align*}
f(A) \subseteq~& f(A') \\
f^{-1}(B) \subseteq ~& f^{-1}(B') \\
f^{-1}(f(A)) \supseteq ~& A \\
f(f^{-1}(B)) \subseteq ~& B
f(A) \subseteq~ & f(A') \\
f^{-1}(B) \subseteq ~ & f^{-1}(B') \\
f^{-1}(f(A)) \supseteq ~ & A \\
f(f^{-1}(B)) \subseteq ~ & B
\end{align*}
For set families $(A_i \subseteq X)_{i \in I}, (B_j \subseteq Y)_{j \in J}$:
\begin{align*}
f(\cup_{i \in I} A_i) = ~& \cup_{i \in I}f(A_i) \\
f(\cap_{i \in I} A_i) \subseteq ~& \cap_{i \in I}f(A_i) \\
f^{-1}(\cup_{j \in J} B_j) = ~& \cup_{j \in J} f^{-1}(B_j) \\
f^{-1}(\cap_{j \in J} B_j) = ~& \cap_{j \in J} f^{-1}(B_j)
f(\cup_{i \in I} A_i) = ~ & \cup_{i \in I}f(A_i) \\
f(\cap_{i \in I} A_i) \subseteq ~ & \cap_{i \in I}f(A_i) \\
f^{-1}(\cup_{j \in J} B_j) = ~ & \cup_{j \in J} f^{-1}(B_j) \\
f^{-1}(\cap_{j \in J} B_j) = ~ & \cap_{j \in J} f^{-1}(B_j)
\end{align*}
\section*{Function Composition}
For functions $f: X \to Y$, $g: Y \to Z$:
\begin{align*}
& (g \circ f): X \to Z \\
& (g\circ f)(x) = g(f(x)) & \forall x \in X \\ \\
& (g \circ f): X \to Z \\
& (g\circ f)(x) = g(f(x)) & \forall x \in X \\ \\
\end{align*}
\section*{Surjection and Injection}
For $f: X \to Y$, $f$ is
@@ -95,6 +95,159 @@ For $f: X \to Y$, $f$ is
\item[surjective] iff $f(X) = Y$, i.e. $\forall y \in Y.~ \exists x \in X.~ f(x) = y$ \\
Range is codomain, 'onto'
\item[injective] iff $\forall x, x' \in X. ~ f(x) = f(x') \implies x = x'$
\item[bijective] iff $f$ is injective and $f$ is surjective
\item[bijective] iff $f$ is injective and $f$ is surjective \\
one-to-one
\end{description}
Given $f: X \to Y$, $g: Y \to Z$: \\
\quad If f and g are injective, so is $g\circ f$ \\
\quad If f and g are surjective, so is $g \circ f$ \\
\quad If $g \circ f$ is injective, so is $f$ \\
\quad If $g \circ f$ is surjective, so is $g$
\section*{Inverse Functions}
The inverse function $f^{-1}$ of $f: X \to Y$ exists iff $f$ is bijective, and is defined by \[f^{-1}(y) = x \text{ where } \exists! x \in X. f(x) = y \qquad \forall y \in Y\]
\begin{align*}
(f \circ f^{-1}) = \operatorname{Id} \\
(f^{-1} \circ f) = \operatorname{Id}
\end{align*}
\section*{Power Sets}
Powerset of S: $\powerset{S}$ has $2^{\card{S}}$ elements is the set of all subsets of $S$ \\
$Fun(X, \{0, 1\})$ is the set of functions $X \to \{0, 1\}$ \\
$\Phi: Fun(X, \{0, 1\}) \to \powerset{X}$ \\
$\Phi(f) = \{ x \in X | f(x) = 1 \}$ \\
$\Phi$ is bijective.
\section*{Binary Operators}
A binary operator is $X^2 \to X$ \\
Union is $\powerset{X}^2 \to \powerset{X}$ \\
$\square$ is the unknown or indeterminate binop sigil \\
Unital: $\forall x \in X. \exists u \in X. u \square x = x \square u = x$
\section*{Construction of the Natural Numbers}
\begin{align*}
x^{+} & = x \cup \{x\} & \text{successor of $x$}
\end{align*}
A set $X$ is \emph{inductive} if $\varnothing \in X \land (a \in X \implies a^+ \in X)$ \\
Axiom: There exists an inductive set. \\
Definition: A natural number is a set that is an element of all inductive sets. \\
Theorem: There exists a set whose elements are the natural numbers. \\
\begin{align*}
& \text{Given an inductive set $A$} \\
& \omega = \{ x \in A | x \text{ is a natural number}\} \\
& \text{any natural number is in $A$ (since $A$ is inductive), and therefore in $\omega$} \\
& \omega \text{ is the natural numbers}
\end{align*}
\\
Define:
\begin{align*}
0 & = \varnothing \\
1 & = 0^+ \\
2 & = 1^+ \\
\ldots
\end{align*}
$\in$ is an ordering over $\omega$, as is $\subseteq$ \\
$\omega$ is an inductive set. Proof: \\
$\varnothing$ is a natural number.
$x \in \omega$ implies $x^+ \in \omega$, as $x$ is natural and is therefore in
every inductive set, and so $x^+$ is in every inductive set and is therefore a
natural number.
\subsection*{Principle of Induction}
If $A \subseteq \omega$ and $A$ is inductive, $A = \omega$.
Since $A$ is inductive, it contains every natural number, so $\omega \subseteq A$. \\
Since $A \subseteq \omega \land \omega \subseteq A$, $A = \omega$
\section*{Recursion on $\omega$}
\subsection*{Principle of Recursion}
For a set $X$, $x_0 \in X$, $h: X \to X$, there exists a unique function $f: \omega \to X$ where $f(0) = x_0$, $f(n^+) = h(f(n))$.
\section*{Relations}
Total order: $(X, \prec)$, requires $\forall x, y, z \in X$: \\
\begin{align*}
& x \prec y \land y \prec z \implies x \prec z \\
& x = y \oplus x \prec y \oplus y \prec x & \text{ (where $\oplus$ denotes XOR) }
\end{align*}
Lexicographic order $x <_L y$ on $\N\times\N = x_0 < y_0 \lor (x_0 = y_0 \land x_1 < y_1)$ \\
For a non-empty subset $A$ of $X$ given a total order $(X, \prec)$, a minimum/least element $a_0 \in A$
exists where $\forall a \in A.~a_0 \preceq a$.
\section*{Ordering on $\omega$}
$(\omega, \in)$ and $(\omega, \subset)$ are both total orderings on $\omega$, such that $\varnothing$ is the minimum and $\forall x \in \omega.~x < x^+$
\section*{Strong Induction}
Every non-empty subset of $\N$ has a minimum. \\ \\
Let $\phi(x)$ be a predicate over $\N$ where $\forall n\in \N.~ (\forall m \in \N.~ m < n \implies \phi(m)) \implies \phi(n)$. \\
Then $\phi(0)$ holds, as $\neg\exists n \in \N.~n<0$, $\phi(1)$ holds as $\phi(0)$ holds, etc.
\begin{align*}
& \neg\exists x \in \N.~\neg\phi(x) \\
& \text{Let } A \text{ be a subset of }N\text{ such that }\phi(n)\text{ is false }\forall n \in A \\
& \text{If not, $\exists a_0 \in A$} \\
& \forall n \in N.~n < a_0 \implies n \not\in A \implies \phi(n) \\
& \text{Then $\phi(n)$ holds $\forall n < a_0$, so $\phi(a_0)$, then $a_0 \not\in A$, which is a contradiction, so $A = \varnothing$}
\end{align*}
\section*{Fibonacci}
Fibonacci Sequence: $F_n$ \\
Roots of $x^2 - x - 1$ are $\phi = \frac{1 + \sqrt{5}}{2}$ and $\psi = \frac{1 - \sqrt{5}}{2}$ \\
$F_n = \frac{\phi^{n+1} - \psi^{n+1}}{\sqrt{5}}$ \\
For $n=0$:
$F_0 = 1 = \frac{\frac{1 + \sqrt{5}}{2} - \frac{1-\sqrt{5}}{2}} = \frac{2\sqrt{5}}{2} = 1$ \\
For $n=1$: \\
$F_1 = 1 = \frac{\paren{\frac{1 + \sqrt{5}}{2}}^2 - \paren{\frac{1 - \sqrt{5}}{2}}^2}{\sqrt{5}} = \frac{\phi + 1 - \psi - 1}{\sqrt{5}}$ \\
For $n\geq 2$:
\begin{align*}
& F_n = F_{n-1} + F_{n-2} = \frac{\phi^n - \psi^n}{\sqrt{5}} + \frac{\phi^{n-1} - \psi^{n-1}}{\sqrt{5}} \\
& = \frac{\phi^{n-1}\paren{\phi + 1} - \psi^{n-1}\paren{\psi + 1}}{\sqrt{5}} \\
& = \frac{\phi^{n-1}\phi^2 - \psi^{n-1}\psi^2}{\sqrt{5}} \\
& = \frac{\phi^{n+1} - \psi^{n+1}}{\sqrt{5}} & \text{as required}
\end{align*}
\subsection*{Zeckendorff's Theorem}
Every natural number can be written as a sum of non-adjacent Fibonacci numbers in a unique way (excluding $F_0$). \\
A finite subset $I$ of $\N^+$ is \emph{Zeckendorff} if it contains no adjacent elements ($\forall x \in I.~x^+ \not\in I$) \\
Define $\mathcal{Z}$ as the set of all Zeckendorff sets, and $\sigma: \mathcal{Z} \to \N^+$ by $\sigma(I) = \sum_{i \in I}F_i$.
The theorem claims $\sigma$ is bijective. \\ \\
For nonempty $I \in \mathcal{Z}$ with largest element $k$:
\begin{align*}
&\text{Let } J = I \setminus \{k\} \\
&\sigma(I) = F_k + \sigma(J) \geq F_k \\
&\text{If } J = \varnothing\text{, } \sigma(I) = F_k \leq F_{k + 1} \\
&\text{Otherwise, we must show } \sigma(I) < F_{k + 1} \\
&\equiv F_k + \sigma(J) < F_{k + 1} \\
&\equiv \sigma(J) < F_{k + 1} - F_k = F_{k-1} \\
&\text{But if $k' = \operatorname{max}(J)$, } \\
&\sigma(J) < F_{k' + 1} \land k' < k - 2 \text{ (since $I$ is \emph{Zeckendorff})} \\
& \sigma(J) < F_{k - 1} \text{ as required.}
\end{align*}
Proof of theorem: $\forall n \in N.~ \sigma$ is bijective.
\begin{align*}
n = 0: \quad& I = \varnothing \\
n > 0: \quad& \text{Let } F_k \leq n < F_{k + 1},~ m = n - F_k \\
& m = \sigma(J) \text{ for some } J \\
& \text{If } J = \varnothing, I = \{k\}. \\
& \text{Otherwise, } k' = \operatorname{max}(J). \\
& \text{If } k' \leq k - 2, I = J \cup \{k\} \\
\end{align*}
\section*{Equivalence Relations}
Reflexive, Symmetric, Transitive \\
Equivalence relations are usually called $\sim$ \\
In a set $X$,
\[ [x] = \{ y \in X | x \sim y \} \]
\[ [x] = [y] \equiv x \sim y \]
Any two equivalence classes of $X$ are either disjoint or equal. \\
\subsection*{Quotient Sets}
$X/\sim~ = \{[x] | x \in X \} \subset \powerset{X}$ \\
A complete set of representatives is a subset $A$ of $X$ where $\forall x \in X. \exists! a \in A. a \in [x].$ \\
I.E. a complete set of representatives contains exactly one element from each element of $X/\sim$ \\
$f: A \to X/\sim$ defined by $f(a) = [a]$
\\\\\\
A function $f: X \to Y$ is \emph{compatible} iff $x \sim y \implies f(x) = f(y)~\forall x, y \in X$ \\
For a \emph{compatible} function, $\Bar{f}: X/\sim~\to Y$ exists and is defined by $\Bar{f}([x]) = f(x)$
\section*{Integers modulo $k$}
Fix some $k \in \N^+$ \\
Define $\sim$ on $\Z$ by $n \sim m \iff n - m$ is a multiple of $k$ \\
$\sim$ is an equivalence relation \\
$[0, k)\cap\N$ is a complete set of representatives for $\sim$ \\
$Z/k$ is the set of integers modulo $k$, $n \equiv m~(\operatorname{mod} k) \iff n \sim m$ \\
$+$ and $\times$ on $\Z/k$:
\begin{align*}
[n] + [m] = [n + m] \\
[n][m] = [nm]
\end{align*}
\end{document}