Compare commits
4 Commits
b50b42c01b
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f2244a076a | ||
|
|
a50fc0e90f | ||
|
|
5bbbb4f1da | ||
|
|
b7b584a989 |
Binary file not shown.
2
CS1527/assessment-2/.envrc
Normal file
2
CS1527/assessment-2/.envrc
Normal file
@@ -0,0 +1,2 @@
|
||||
export NIX_PATH="nixpkgs=flake:nixpkgs"
|
||||
use nix
|
||||
404
CS1527/assessment-2/assessment2.py
Normal file
404
CS1527/assessment-2/assessment2.py
Normal file
@@ -0,0 +1,404 @@
|
||||
#!/usr/bin/env python
|
||||
"""Usage: `python assessment2.py {subcommand} {expressions}`
|
||||
|
||||
If expressions are not provided, they are taken from each line of stdin.
|
||||
Documentation of subcommands is available from `python assessment2.py -h`.
|
||||
|
||||
Examples for marking criteria:
|
||||
1. Eval: `python assessment2.py eval "(((2*(3+2))+5)/2)"`
|
||||
2. Tree: `python assessment2.py render-tree "(((2*(3+2))+5)/2)"`
|
||||
3. Preorder: `python assessment2.py format-prefix "(((2*(3+2))+5)/2)"`
|
||||
In-order: `python assessment2.py format-infix "(((2*(3+2))+5)/2)"`
|
||||
Postorder: `python assessment2.py format-postfix "(((2*(3+2))+5)/2)"`
|
||||
4. Errors: `python assessment2.py eval "(4*3*2)" "(4*(2))" "(4*(3+2)*(2+1))" "(2*4)*(3+2)" "((2+3)*(4*5)" "((2+3)*(4*5)" "(2+5)*(4/(2+2)))" "(2+5)*(4/(2+2)))" "(((2+3)*(4*5))+(1(2+3)))"`
|
||||
5. Tests: `python assessment2.py test`
|
||||
|
||||
Tests can be run with `pytest assessment2.py` or `python assessment2.py test`.
|
||||
|
||||
All of the formatting is implemented with post-order traversals. This is
|
||||
necessary to output parenthesis in the pre- and in-order cases. It could also be
|
||||
done with a buffer and a combined traversal (with callbacks before, between, and
|
||||
after subtree visits), but that requires mutation.
|
||||
|
||||
Note: this program requires Python 3.12 due to the generic syntax used to define
|
||||
`BTree.traverse`. Pytest is also required. These should be installed already
|
||||
on Codio.
|
||||
"""
|
||||
# stdlib
|
||||
from dataclasses import dataclass
|
||||
from typing import Literal, Tuple, Callable, cast, override
|
||||
from operator import add, sub, mul, truediv as div
|
||||
from argparse import ArgumentParser
|
||||
import sys
|
||||
import re
|
||||
from textwrap import dedent
|
||||
|
||||
# pytest, from https://pypi.org/project/pytest/
|
||||
# authors can be found at https://github.com/pytest-dev/pytest/graphs/contributors,
|
||||
import pytest
|
||||
|
||||
OPERATORS: dict[Literal["+", "-", "*", "/"], Callable[[float, float], float]] = {
|
||||
"+": add,
|
||||
"-": sub,
|
||||
"*": mul,
|
||||
"/": div,
|
||||
}
|
||||
|
||||
|
||||
class BTree:
|
||||
value: float
|
||||
|
||||
def traverse[T](
|
||||
self,
|
||||
value: Callable[["Value", int], T],
|
||||
operator: Callable[["Operator", T, T, int], T],
|
||||
depth: int = 0,
|
||||
) -> T:
|
||||
"""Traverse the binary tree with a post-order traversal
|
||||
|
||||
`value` takes the value node and its depth from the root node
|
||||
`operator` takes the operator node, the results of traversing the left
|
||||
and right subtrees, and the depth of the node
|
||||
|
||||
The tree could, for example, be evaluated with `traverse`:
|
||||
```
|
||||
(...).traverse(
|
||||
lambda node, _: node.value,
|
||||
lambda node, left, right, _: OPERATORS[node.operator](left, right)
|
||||
)
|
||||
```
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def as_preorder_str(self) -> str:
|
||||
"""Format the tree in prefix notation"""
|
||||
return self.traverse(
|
||||
lambda value, _: str(value.value),
|
||||
lambda op, left, right, _: f"({op.operator} {left} {right})",
|
||||
)
|
||||
|
||||
def as_inorder_str(self) -> str:
|
||||
"""Format the tree as a typical parenthesized expression"""
|
||||
return self.traverse(
|
||||
lambda value, _: str(value.value),
|
||||
lambda op, left, right, _: f"({left} {op.operator} {right})",
|
||||
)
|
||||
|
||||
__str__ = as_inorder_str
|
||||
|
||||
def as_inorder_lines(self) -> str:
|
||||
"""Format the tree, visually as a tree"""
|
||||
return self.traverse(
|
||||
lambda value, depth: " " * depth + str(value.value),
|
||||
lambda op, left, right, depth: f"{left}\n{' ' * depth}{op.operator}\n{right}",
|
||||
)
|
||||
|
||||
def as_postorder_str(self) -> str:
|
||||
"""Format the tree in postfix notation (RPN)"""
|
||||
return self.traverse(
|
||||
lambda value, _: str(value.value),
|
||||
lambda op, left, right, _: f"{left} {right} {op.operator}",
|
||||
)
|
||||
|
||||
|
||||
@dataclass(frozen=True, slots=True)
|
||||
class Value(BTree):
|
||||
value: float
|
||||
|
||||
@override
|
||||
def traverse[T](
|
||||
self,
|
||||
value: Callable[["Value", int], T],
|
||||
operator: Callable[["Operator", T, T, int], T],
|
||||
depth: int = 0,
|
||||
) -> T:
|
||||
"""Traverse the binary tree with a post-order traversal
|
||||
|
||||
`value` takes the value node and its depth from the root node
|
||||
`operator` takes the operator node, the results of traversing the left
|
||||
and right subtrees, and the depth of the node
|
||||
|
||||
The tree could, for example, be evaluated with `traverse`:
|
||||
```
|
||||
(...).traverse(
|
||||
lambda node, _: node.value,
|
||||
lambda node, left, right, _: OPERATORS[node.operator](left, right)
|
||||
)
|
||||
```
|
||||
"""
|
||||
|
||||
return value(self, depth)
|
||||
|
||||
|
||||
@dataclass(frozen=True, slots=True)
|
||||
class Operator(BTree):
|
||||
operator: Literal["+", "-", "*", "/"]
|
||||
left: BTree
|
||||
right: BTree
|
||||
|
||||
@property
|
||||
def value(self) -> float: # type: ignore - the field should be read-only
|
||||
return OPERATORS[self.operator](self.left.value, self.right.value)
|
||||
|
||||
@override
|
||||
def traverse[T](
|
||||
self,
|
||||
value: Callable[["Value", int], T],
|
||||
operator: Callable[["Operator", T, T, int], T],
|
||||
depth: int = 0,
|
||||
) -> T:
|
||||
"""Traverse the binary tree with a post-order traversal
|
||||
|
||||
`value` takes the value node and its depth from the root node
|
||||
`operator` takes the operator node, the results of traversing the left
|
||||
and right subtrees, and the depth of the node
|
||||
|
||||
The tree could, for example, be evaluated with `traverse`:
|
||||
```
|
||||
(...).traverse(
|
||||
lambda node, _: node.value,
|
||||
lambda node, left, right, _: OPERATORS[node.operator](left, right)
|
||||
)
|
||||
```
|
||||
"""
|
||||
|
||||
return operator(
|
||||
self,
|
||||
self.left.traverse(value, operator, depth + 1),
|
||||
self.right.traverse(value, operator, depth + 1),
|
||||
depth,
|
||||
)
|
||||
|
||||
|
||||
def parse(expr: str) -> BTree:
|
||||
"""Parse a parenthesized expression as in the spec.
|
||||
|
||||
Requires a single parenthesized string, potentially with whitespace
|
||||
Raises ValueError on parse errors
|
||||
"""
|
||||
|
||||
def number(expr: str) -> Tuple[BTree, str] | None:
|
||||
if not expr[0].isdigit():
|
||||
return None
|
||||
rest = expr.lstrip("0123456789")
|
||||
return Value(int(expr[: len(expr) - len(rest)])), rest.lstrip()
|
||||
|
||||
def parenthesized(expr: str) -> Tuple[BTree, str] | None:
|
||||
if not expr.startswith("("):
|
||||
return None
|
||||
expr = expr[1:].lstrip()
|
||||
|
||||
left, expr = operand(expr)
|
||||
|
||||
operator, expr = expr[0], expr[1:]
|
||||
if operator not in OPERATORS:
|
||||
raise ValueError(f"Unknown operator {operator}")
|
||||
operator = cast(Literal["+", "-", "*", "/"], operator)
|
||||
|
||||
right, expr = operand(expr.lstrip())
|
||||
|
||||
if not expr.startswith(")"):
|
||||
if expr and expr[0] in OPERATORS:
|
||||
raise ValueError("Too many operands in expression")
|
||||
raise ValueError("Expected closing parenthesis")
|
||||
return Operator(operator, left, right), expr[1:].lstrip()
|
||||
|
||||
def operand(expr: str) -> Tuple[BTree, str]:
|
||||
v = number(expr) or parenthesized(expr)
|
||||
if not v:
|
||||
raise ValueError(
|
||||
"Expected a number or the beginning of a parenthesized expression"
|
||||
)
|
||||
return v
|
||||
|
||||
result = parenthesized(expr.lstrip())
|
||||
if not result or result[1]:
|
||||
# If rest is non-empty, then something was after the parenthesis starting the expression
|
||||
# i.e. the full expression was not parenthesized.
|
||||
raise ValueError("Expected parenthesized expression at the top level")
|
||||
|
||||
return result[0]
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("expr", "ast"),
|
||||
[
|
||||
("(1 + 1)", Operator("+", Value(1), Value(1))),
|
||||
(
|
||||
"(2*(3+ 2))",
|
||||
Operator("*", Value(2), Operator("+", Value(3), Value(2))),
|
||||
),
|
||||
(" (1 +1) ", Operator("+", Value(1), Value(1))),
|
||||
],
|
||||
)
|
||||
def test_parse(expr: str, ast: BTree):
|
||||
"""Test parsing of expressions"""
|
||||
assert parse(expr) == ast
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("expr", "value"),
|
||||
[
|
||||
("(1 + 2)", 3),
|
||||
("(12 + (((4 / 2) * 3) + (3 * 2)))", 24),
|
||||
("(((2 * (3 + 2)) + 5) / 2)", 7.5),
|
||||
],
|
||||
)
|
||||
def test_eval(expr: str, value: float):
|
||||
"""Test evaluation"""
|
||||
assert parse(expr).value == value
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("expr", "tree"),
|
||||
[
|
||||
(
|
||||
"(1 + 2)",
|
||||
"""
|
||||
1
|
||||
+
|
||||
2
|
||||
""",
|
||||
),
|
||||
(
|
||||
"(1 + (((4 / 2) * 3) + (3 * 2)))",
|
||||
"""
|
||||
1
|
||||
+
|
||||
4
|
||||
/
|
||||
2
|
||||
*
|
||||
3
|
||||
+
|
||||
3
|
||||
*
|
||||
2
|
||||
""",
|
||||
),
|
||||
(
|
||||
"(((2*(3+2))+5)/2)",
|
||||
"""
|
||||
2
|
||||
*
|
||||
3
|
||||
+
|
||||
2
|
||||
+
|
||||
5
|
||||
/
|
||||
2
|
||||
"""
|
||||
)
|
||||
],
|
||||
)
|
||||
def test_inorder_lines(expr: str, tree: str):
|
||||
"""Test tree rendering"""
|
||||
assert parse(expr).as_inorder_lines() == dedent(tree).strip("\n")
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("expr", "prefix"),
|
||||
[
|
||||
("(1 + 2)", "(+ 1 2)"),
|
||||
("(1 + (((4 / 2) * 3) + (3 * 2)))", "(+ 1 (+ (* (/ 4 2) 3) (* 3 2)))"),
|
||||
],
|
||||
)
|
||||
def test_prefix(expr: str, prefix: str):
|
||||
"""Test prefix formatting"""
|
||||
assert parse(expr).as_preorder_str() == prefix
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("expr"),
|
||||
[
|
||||
"(1 + 2)",
|
||||
"(1 + (((4 / 2) * 3) + (3 * 2)))",
|
||||
"(((3 + 2) * 2) + (((7 / 3) * 5) - 3))",
|
||||
],
|
||||
)
|
||||
def test_infix_roundtrip(expr: str):
|
||||
"""Test infix formatting roundtrips"""
|
||||
assert str(parse(expr)) == expr
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("expr", "postfix"),
|
||||
[
|
||||
("(1 + 2)", "1 2 +"),
|
||||
("(1 + (((4 / 2) * 3) + (3 * 2)))", "1 4 2 / 3 * 3 2 * + +"),
|
||||
],
|
||||
)
|
||||
def test_postfix(expr: str, postfix: str):
|
||||
"""Test postfix formatting"""
|
||||
assert parse(expr).as_postorder_str() == postfix
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("expr", "err"),
|
||||
[
|
||||
("(4 * 3 * 2)", "Too many operands in expression"),
|
||||
("(4 * (2))", "Unknown operator )"),
|
||||
("(4 * (3 + 2) * (2 + 1))", "Too many operands in expression"),
|
||||
("(2 *4)*(3+2)", "Expected parenthesized expression at the top level"),
|
||||
("(2+5)*(4/(2+2))", "Expected parenthesized expression at the top level"),
|
||||
("(((2+3)*(4*5))+(1(2+3)))", "Unknown operator ("),
|
||||
],
|
||||
)
|
||||
def test_error(expr: str, err: str):
|
||||
"""Test error messages"""
|
||||
with pytest.raises(ValueError, match=re.escape(err)):
|
||||
parse(expr)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = ArgumentParser(usage=__doc__)
|
||||
subcommands = parser.add_subparsers(title="Subcommands", required=True)
|
||||
|
||||
def with_expressions(parser):
|
||||
parser.add_argument(
|
||||
"expressions",
|
||||
nargs="*",
|
||||
help="The expressions to operate on. If none are provided, operate on lines of stdin.",
|
||||
)
|
||||
return parser
|
||||
|
||||
with_expressions(
|
||||
subcommands.add_parser("eval", help="Evaluate the expression")
|
||||
).set_defaults(func=lambda expr: expr.value)
|
||||
with_expressions(
|
||||
subcommands.add_parser("render-tree", help="Render the expression as a tree")
|
||||
).set_defaults(func=BTree.as_inorder_lines)
|
||||
with_expressions(
|
||||
subcommands.add_parser(
|
||||
"format-prefix", help="Format the expression in prefix notation"
|
||||
)
|
||||
).set_defaults(func=BTree.as_preorder_str)
|
||||
with_expressions(
|
||||
subcommands.add_parser(
|
||||
"format-infix",
|
||||
help="Format the expression in typical parenthesized infix notation",
|
||||
)
|
||||
).set_defaults(func=BTree.as_inorder_str)
|
||||
with_expressions(
|
||||
subcommands.add_parser(
|
||||
"format-postfix",
|
||||
help="Format the expression in postfix notation, i.e. as RPN",
|
||||
)
|
||||
).set_defaults(func=BTree.as_postorder_str)
|
||||
subcommands.add_parser("test", help="Run tests").set_defaults(
|
||||
func=lambda: pytest.main([__file__])
|
||||
)
|
||||
args = parser.parse_args()
|
||||
if "expressions" in args:
|
||||
for expression in args.expressions or sys.stdin:
|
||||
if len(args.expressions) > 1:
|
||||
print(expression + ":")
|
||||
try:
|
||||
parsed = parse(expression)
|
||||
except ValueError as e:
|
||||
print(f"Error: {e}")
|
||||
continue
|
||||
print(args.func(parsed))
|
||||
else:
|
||||
args.func()
|
||||
3
CS1527/assessment-2/shell.nix
Normal file
3
CS1527/assessment-2/shell.nix
Normal file
@@ -0,0 +1,3 @@
|
||||
{ pkgs ? import <nixpkgs> {} }: pkgs.mkShell {
|
||||
packages = [(pkgs.python312.withPackages (p: with p; [ python-lsp-server pytest pytest-watch black ])) pkgs.nodePackages.pyright];
|
||||
}
|
||||
@@ -254,11 +254,11 @@ $+$ and $\times$ on $\Z/k$:
|
||||
\section*{Countable Sets}
|
||||
A set $X$ is finite if $\exists n \geq 0. $ a bijection $\{1, ...n\} \to X$ \\
|
||||
Pigeonhole Principle: for finite $X$, any injective $f: X \to X$ is also surjective. \\
|
||||
$\N$ is infinite. Proof: $f: \N \to \N$ is trivially injective, and $\neg\exists x.~f(x) = 0$, and so not surjective. \\
|
||||
$\N$ is infinite. Proof: $f: \N \to \N $ defined by $ f(x) = x + 1$ is trivially injective, and $\neg\exists x.~f(x) = 0$, and so not surjective. \\
|
||||
By the inverse of the Pigeonhole Principle, $\N$ is infinite.\\
|
||||
A set $X$ is \emph{countably infinite} iff there exists a bijection $\N \to X$. \\
|
||||
A set is \emph{countable} iff it is finite or countably infinite. \\
|
||||
Any subset of $\N$ is countable. Proof: Let $X \in \N$.\\
|
||||
Any subset of $\N$ is countable. Proof: Let $X \subseteq \N$.\\
|
||||
If $X$ is finite, it's trivially countable.
|
||||
Otherwise, $X$ is infinite and it must be shown that $X$ is countably infinite. \\
|
||||
For $k \in \N$, $X_{>k} = \{ n \in X | n > k \}$. Then $X_{>k} \not= \varnothing$, as $X$ would be a subset of $\{1..k\}$ and would be finite. \\
|
||||
|
||||
1
MA2008/2024-09-24
Normal file
1
MA2008/2024-09-24
Normal file
@@ -0,0 +1 @@
|
||||
|
||||
76
MA2008/decls.tex
Normal file
76
MA2008/decls.tex
Normal file
@@ -0,0 +1,76 @@
|
||||
\documentclass[fleqn]{article}
|
||||
\usepackage{amsmath,amssymb,amsthm}
|
||||
\usepackage[margin=0.25in]{geometry}
|
||||
\usepackage{enumitem}
|
||||
\usepackage{systeme}
|
||||
\usepackage{mathtools}
|
||||
|
||||
\date{}
|
||||
\author{}
|
||||
|
||||
\newcommand{\paren}[1]{\left(#1\right)}
|
||||
\newcommand{\powerset}[1]{\mathcal{P}\paren{#1}}
|
||||
\renewcommand{\Re}[1]{\operatorname{\mathbb{R}e}\paren{#1}}
|
||||
\renewcommand{\Im}[1]{\operatorname{\mathbb{{I}}m}\paren{#1}}
|
||||
\newcommand{\C}{\mathbb{C}}
|
||||
\newcommand{\N}{\mathbb{N}}
|
||||
\newcommand{\Z}{\mathbb{Z}}
|
||||
\newcommand{\Q}{\mathbb{Q}}
|
||||
\newcommand{\R}{\mathbb{R}}
|
||||
\newcommand{\conj}[1]{\overline{#1}}
|
||||
\renewcommand{\mod}[1]{\left|#1\right|}
|
||||
\newcommand{\abs}[1]{\left|#1\right|}
|
||||
\newcommand{\polar}[2]{#1\paren{\cos{\paren{#2}} + i\sin{\paren{#2}}}}
|
||||
\newcommand{\adj}[1]{\operatorname{adj}#1}
|
||||
\newcommand{\card}[1]{\left|#1\right|}
|
||||
\newcommand{\littletaller}{\mathchoice{\vphantom{\big|}}{}{}{}}
|
||||
\newcommand{\restr}[2]{{% we make the whole thing an ordinary symbol
|
||||
\left.\kern-\nulldelimiterspace % automatically resize the bar with \right
|
||||
#1 % the function
|
||||
\littletaller % pretend it's a little taller at normal size
|
||||
\right|_{#2} % this is the delimiter
|
||||
}}
|
||||
|
||||
\makeatletter
|
||||
\renewcommand*{\env@matrix}[1][*\c@MaxMatrixCols c]{%
|
||||
\hskip -\arraycolsep
|
||||
\let\@ifnextchar\new@ifnextchar
|
||||
\array{#1}}
|
||||
\makeatother
|
||||
|
||||
|
||||
% https://gitlab.com/jim.hefferon/linear-algebra/-/blob/master/src/sty/linalgjh.sty
|
||||
\newlength{\grsteplength}
|
||||
\setlength{\grsteplength}{1.5ex plus .1ex minus .1ex}
|
||||
|
||||
\newcommand{\grstep}[2][\relax]{%
|
||||
\ensuremath{\mathrel{
|
||||
\hspace{\grsteplength}\mathop{\longrightarrow}\limits^{#2\mathstrut}_{
|
||||
\begin{subarray}{l} #1 \end{subarray}}\hspace{\grsteplength}}}}
|
||||
\newcommand{\repeatedgrstep}[2][\relax]{\hspace{-\grsteplength}\grstep[#1]{#2}}
|
||||
|
||||
\newcommand{\swap}{\leftrightarrow}
|
||||
|
||||
% https://tex.stackexchange.com/a/198806
|
||||
\makeatletter
|
||||
\newcommand{\subalign}[1]{%
|
||||
\vcenter{%
|
||||
\Let@ \restore@math@cr \default@tag
|
||||
\baselineskip\fontdimen10 \scriptfont\tw@
|
||||
\advance\baselineskip\fontdimen12 \scriptfont\tw@
|
||||
\lineskip\thr@@\fontdimen8 \scriptfont\thr@@
|
||||
\lineskiplimit\lineskip
|
||||
\ialign{\hfil$\m@th\scriptstyle##$&$\m@th\scriptstyle{}##$\hfil\crcr
|
||||
#1\crcr
|
||||
}%
|
||||
}%
|
||||
}
|
||||
\makeatother
|
||||
|
||||
\theoremstyle{definition}
|
||||
\newtheorem*{theorem}{Theorem}
|
||||
\newtheorem*{lemma}{Lemma}
|
||||
\newtheorem*{corollary}{Corollary}
|
||||
|
||||
\theoremstyle{remark}
|
||||
\newtheorem*{note}{Note}
|
||||
27
MA2008/linear-transforms.tex
Normal file
27
MA2008/linear-transforms.tex
Normal file
@@ -0,0 +1,27 @@
|
||||
\input{decls.tex}
|
||||
\title{Vector Spaces and Linear Transformations}
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
\begin{description}
|
||||
\item[Linear Transformation] A function $\phi: V \to W$ between vector spaces $V$ and $W$ (over some field $K$), such that
|
||||
\begin{align*}
|
||||
\phi(v + w) & \equiv \phi(v) + \phi(w) \\
|
||||
\phi(x \cdot v) & \equiv x \cdot \phi(v) \tag{For $x \in K$}
|
||||
\end{align*}
|
||||
\end{description}
|
||||
|
||||
Differentiation is a linear transformation.
|
||||
Solutions to $f'' + f = 0$ for function $f$ are a vector space.
|
||||
|
||||
\begin{theorem}
|
||||
For any scalars $\lambda, \mu \in \R$, there is a unique solution such that $f(0) = \mu$ and $f'(0) = \lambda$
|
||||
\end{theorem}
|
||||
The vector space is then two-dimensional, with basis $sin(x), cos(x)$
|
||||
|
||||
|
||||
\subsection*{}
|
||||
Vector spaces are used over finite fields in \emph{Algebraic Coding Theory}. The field is $\mathbb{F}_2 = \{0, 1\}$ - the integers mod 2.
|
||||
Binary strings of length $n$ are then a vector space over $\mathbb{F}_2^n$.
|
||||
ECC can be based on vector subspaces of $F_2^n$. (Vector subspaces are closed subsets of a vector space).
|
||||
\end{document}
|
||||
6
MA2008/tmpl.tex
Normal file
6
MA2008/tmpl.tex
Normal file
@@ -0,0 +1,6 @@
|
||||
\input{decls.tex}
|
||||
\title{}
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
\end{document}
|
||||
Reference in New Issue
Block a user