\input{decls.tex} \title{Complex Numbers} \begin{document} \maketitle \section*{Operations} \begin{align*} \forall z \in \C & \\ & \mod{z} = \sqrt{\Re{z}^2 + \Im{z}^2} \tag{modulus} \\ & \conj{z} = \Re{z} - i\Im{z} \tag{conjugate} \end{align*} \section*{Identities} \begin{align*} \forall z, w \in \C&: \\ & z\conj{z} \equiv \mod{z}^2 \\ & \conj{\conj{z}} \equiv z \\ & |\conj{z}| \equiv \mod{z} \\ & z + \conj{z} \equiv 2\Re{z} \\ & z - \conj{z} \equiv {-2\Im{z}} \\ & \Re{z} \leq \mod{z} & \Re{z} \leq \abs{\Re{z}} = \sqrt{\Re{z}^2} \leq \sqrt{\Re{z}^2 + \Im{z}^2} = \mod{z} \\ & \Im{z} \leq \mod{z} & \Im{z} \leq \abs{\Im{z}} = \sqrt{\Im{z}^2} \leq \sqrt{\Im{z}^2 + \Re{z}^2} = \mod{z} \\ & \conj{zw} \equiv \conj{z}\cdot\conj{w} \\ & \conj{z + w} \equiv \conj{z} + \conj{w} \\ & \conj{\paren{\frac{z}{w}}} \equiv \frac{\conj{z}}{\conj{w}} \text { where } w \neq 0 \\ & \mod{zw} \equiv \mod{z}\mod{w} \\ & \mod{\frac{z}{w}} \equiv \frac{\mod{z}}{\mod{w}} \text{ where } w \neq 0 \\ \end{align*} \section*{Triangle Inequality} \begin{align*} \forall z, w \in \C. & \mod{z + w} \leq \mod{z} + \mod{w} \text {, as} \\ & \mod{z + w}^2 \\ & = \paren{z + w}\conj{\paren{z + w}} \\ & = z\conj{z} + w\conj{w} + z\conj{w} + w\conj{z} \\ & = \mod{z}^2 + \mod{w}^2 + z\conj{w} + \conj{z\conj{w}} \\ & = \mod{z}^2 + \mod{w}^2 + 2\Re{z\conj{w}} \\ & \leq \mod{z}^2 + \mod{w}^2 + 2\mod{z\conj{w}} \\ & = \mod{z}^2 + \mod{w}^2 + 2\mod{z}\mod{w} \\ & = \paren{\mod{z} + \mod{w}}^2 \\ & \\ & \mod{z + w}^2 \geq \paren{\mod{z} + \mod{w}}^2 \\ & \mod{z + w} \geq \mod{z} + \mod{w} &\text{as moduli are non-negative} \end{align*} \section*{Division} \begin{align*} \forall z, w \in \C &, w \neq 0. \\ & \frac{z}{w} = \frac{z}{w}\frac{\conj{w}}{\conj{w}} = \frac{z\conj{w}}{\mod{w}^2} \end{align*} \section*{Square Root} \begin{align*} \forall z \in \C &. \\ & \sqrt{z} = \sqrt{\frac{\mod{z} + \Re{z}}{2}} + i\frac{\abs{b}}{b}\sqrt{\frac{\mod{z} - \Re{z}}{2}} \\ & \equiv \sqrt{\mod{z}}\paren{\cos{\frac{\arg{z}}{2}} + i\sin{\frac{\arg{z}}{2}}} \end{align*} \section*{Polar Form} \begin{align*} \forall z \in \C &. \\ & \arg{z} = \arctan{\frac{\Im{z}}{\Re{z}}} \paren{+\pi \text{ if } \Re{z} < 0} \\ & \Re{z} = \mod{z}\cos{\arg{z}} & \Im{z} = \mod{z}\sin{\arg{z}} \end{align*} \section*{Locii} \begin{description} \item[Locus] A graph of an inequality on complex numbers, generally of their modulus \item[Annulus] A locus of the form $a \leq \mod{z - b} \leq c$ for constants $a$, $b$, and $c$ \item[Principal Argument] The argument of a complex number in $[0, 2\pi)$ \end{description} \subsection*{Hyperbolae} \[ \frac{x^2}{r^2} - \frac{y^2}{R^2} = c\quad \text{ for constant $r$, $R$, $c$ } \] \section*{De Moivre's Theorem} \begin{align*} \forall z, w \in \C. & \arg{zw} = \arg{z} + \arg{w} \\ \text{Proof:} \\ & \text{Let } \alpha = \arg{z} \text{ and } \beta = \arg{w} \\ & zw = \polar{\mod{z}}{\alpha}\polar{\mod{w}}{\beta} \\ & = \mod{z}\mod{w}\paren{\cos{\alpha}\cos{\beta} - \sin{\alpha}\sin{\beta} + i\paren{\cos{\alpha}\sin{\beta} + \sin{\alpha}\cos{\beta}}} \\ & = \polar{\mod{zw}}{\alpha + \beta} & \text{Trigonometric identites - addition of angles} \\ \end{align*} Multiplication can then use $\mod{zw}$ and $\arg{zw}$, and exponentiation by induction ($z^{\paren{n - 1}} z$), and for negative exponents $\paren{z^{-1}}^{\abs{n}}$ \subsection*{Example} \begin{align*} & \frac{2i^3}{\paren{1+\sqrt{3}i}^4} \\ & = \frac{\paren{2^3\cdot i^3}}{\polar{\mod{1+\sqrt{3}i}^4}{4\cdot\arg{1+\sqrt{3}i}}} \\ & = \frac{-8i}{\polar{\sqrt{10}^4}{4\cdot\arctan{\frac{\sqrt{3}}{1}}}} \\ & = \frac{-8i}{\polar{100}{4\cdot\arctan{\sqrt{3}}}} \\ & = \frac{-8i}{\polar{100}{\frac{4\pi}{3}}} \\ & = \paren{-8i}\cdot\paren{\polar{100}{\frac{4\pi}{3}}}^{-1} \\ & = \paren{-8i}\cdot\paren{\polar{100^{-1}}{\frac{-4\pi}{3}}} \\ & = \polar{8}{\frac{\pi}{2}}\cdot\polar{\frac{1}{100}}{\frac{-4\pi}{3}} \\ & = \polar{\frac{8}{100}}{\frac{\pi}{2} + \frac{-4\pi}{3}} \\ & = \polar{\frac{8}{100}}{\frac{3\pi}{6}+\frac{-8\pi}{6}} \\ & = \polar{\frac{8}{100}}{\frac{-5\pi}{6}} \\ & = \frac{8}{100}\cdot\paren{\frac{-\sqrt{3}}{2} - \frac{1}{2}i} \\ & = \frac{-\sqrt{3}}{25} + \frac{1}{25}i \\ \end{align*} \subsection*{$n^\text{th}$ Roots} \begin{align*} i & = \polar{1}{\frac{\pi}{2} + 2k\pi} \\ & \sqrt[3]{i} = \polar{\sqrt[3]{1}}{\frac{\pi}{2}\cdot\frac{1}{3} + 2k\pi\cdot\frac{1}{3}} \text{ - cyclic at $k\,$mod$\,3$} \end{align*} \\ \\ \[\forall z \in \C, n \in \N.\quad \exists~ n \text{ distinct $n^\text{th}$ roots of $z$, which are } \] \[ \paren{\sqrt[n]{z}}_{k+1} = \polar{\sqrt[n]{\mod{z}}}{\frac{\arg{z} + 2k\pi}{n}} \forall k \in \N, [0, n) \] Roots of unity are the $n^\text{th}$ complex roots of 1\\ \begin{align*} \sqrt[n]{1} & = \polar{1}{\frac{2k\pi}{n}} \forall k \in 0..n \\ & = 1, .. \end{align*} Distributed around the unit circle evenly spaced \subsection*{Use in Trigonometry} To find $\cos{n\theta}$ or $\sin{n\theta}$ in terms of $\cos{\theta}$ and $\sin{\theta}$ \begin{align*} \paren{\cos{\theta} + i\sin{\theta}}^n & = \cos{n\theta} + i\sin{n\theta} \\ & \Re{\paren{\cos{\theta} + i\sin{\theta}}^n} = \cos{n\theta} \\ & \Im{\paren{\cos{\theta} + i\sin{\theta}}^n} = \sin{n\theta} \\ \end{align*} Binomial Expansion by Pascal's Triangle - sum of powers of the term are the number in pascal's triangle \\ 1, sum of two above \section*{Power Series} \begin{align*} \forall x \in \R .& ~ e^x = \sum_{n=0}^{\infty}\frac{x^n}{n!} \\ & \cos{x} = \sum_{n=0}^\infty\paren{\paren{-1}^n\cdot\frac{x^{2n}}{\paren{2n}!}} & \sin{x} = \sum_{n=0}^\infty\paren{\paren{-1}^n\cdot\frac{x^{2n+1}}{\paren{2n+1}!}} \end{align*} Define these for $x \in \C$ in the same way \begin{align*} \forall b \in \R . & ~ e^{bi} = 1 + bi + \frac{(bi)^2}{2!} + \frac{(bi)^3}{3!} + ...\\ & = \paren{1 - \frac{b^2}{2!} + \frac{b^4}{4!}} + i\paren{b - \frac{b^3}{3!} + \frac{b^5}{5!}} \\ & = \cos{b} + i\sin{b} \\ \therefore \\ & e^{a + bi} = e^a\cdot e^{bi} = \polar{e^a}{b} \end{align*} \subsection*{Consequences} $$ e^{i\pi} = -1 $$ De Moivre's Theorem: $$ e^{i\alpha}e^{i\beta} = e^{i\paren{\alpha+\beta}} $$ \subsection*{$\sin$, $\cos$ of Complex Numbers} \begin{align*} \forall \theta \in \R. \quad & e^{i\theta} + e^{-i\theta} = \cos{\theta} + i\sin{\theta} + \cos{-\theta} + i\sin{-\theta} \\ & = \cos{\theta} + i\sin{\theta} + \cos{\theta} - i\sin{\theta} \\ & = 2\cos{\theta} \\ \therefore \\ & \cos{\theta} = \frac{e^{i\theta} + e^{-i\theta}}{2} \quad \forall \theta \in \R \end{align*} Similarly, \[ \sin{\theta} = \frac{e^{i\theta} - e^{-i\theta}}{2i}\quad\forall\theta\in\R \] \\ Define $\cos{\theta}$ as \[ \frac{e^{i\theta} + e^{-i\theta}}{2}$ $~\forall \theta \in \C \] Define $\sin{\theta}$ as \[ \frac{e^{i\theta} - e^{-i\theta}}{2i}$ $~\forall \theta \in \C \] \subsubsection*{Examples} \begin{align*} \cos{\paren{1 + i}} = \frac{e^{i\paren{1 + i}} + e^{-i\paren{1 + i}}}{2} = \frac{e^{i - 1} + e^{1 - i}}{2} = \frac{1}{2}\paren{\polar{e^{-1}}{1} + \polar{e}{-1}} \end{align*} \subsection*{Logarithms of Complex Numbers} $$ \forall y \in \R, y > 0. \quad e^{\ln{y}} = y $$ \begin{align*} \forall z \in \C. \quad & e^{\ln{z}} = z \\ & \text{let } w = \ln{z} = c + di \\ & e^w = e^{c + di} = \polar{e^c}{d} = z \\ & \implies e^c = \mod{z}, d = \arg{z} \\ & \implies w = c + di = \ln{\mod{z}} + i\arg{z} \end{align*} Note: $\arg{z}$ is multivalued, therefore $\ln{z}$ is multivalued $$ \ln{z} = \ln{\mod{z}} + i\arg{z} $$ Sidenote: $\forall a \in \R, a < 0. \quad \ln{a} = \ln{\abs{a}} + i\pi\paren{2n + 1} \forall n \in \N$ $$ \forall z, w \in \C. \quad z^w = e^{w\ln{z}} $$ Exponents of complex numbers are \emph{odd}. $\quad z^{w_1\cdot w_2} \leq \paren{z^{w_1}}^{w_2}$ - They aren't necessarily equal \end{document}