1. a) 3 b) -1 c) 787 d) 2639 2. a) 128 b) 7 c) 2 d) -256 3. a) 1, -2, 4, -8 b) 3, 3, 3, 3 c) 8, 13, 23, 71 d) 2, 0, 8, 0 4. a) 2, 5, 8, 11, 14, 17, 20, 23, 26, 29 b) 0, 0, 0, 1, 1, 1, 2, 2, 2, 3 c) 1, 1, 3, 3, 5, 5, 7, 7, 9, 9 d) 3, 6, 12, 24, 48, 96, 192, 384, 768, 1336 5. a_0 = 3, a_n = a_{n - 1} + 2 (i.e. the odd integers starting at 3) the primes starting at three - one more 6. a) 2, 12, 72, 432, 2592 b) 2, 4, 16, 256, 65536 c) 1, 2, 5, 11, 26 d) 1, 1, 6, 27, 204 7. a) a_n = -3a_{n-1} + 4a_{n-2} = -3(0) + 4(0) = 0 = a_n b) a_n = -3(1) + 4(1) = 4 - 3 = 1 = a_n c) a_n = -3((-4)^{n-1}) + 4((-4)^{n-2}) = -3(-4)(-4^{n-2}) + 4((-4)^{n-2}) = (-4)^{n-2}((-3)(-4) + 4) = (-4)^{n-1}(-3 - 1) = (-4)^n = a_n d) a_n = -3(2*(-4)^{n-1} + 3) + 4(2 * (-4)^{n-2} + 3) = -6(-4)^{n-1} - 9 - 2(-4)^{n-1} + 12 = -8(-4)^{n-1} + 3 = 2(-4)^n + 3 = a_n 8.