\input{decls.tex} \title{Sets} \begin{document} \maketitle Set comprehensions can be written $\{ x | x \in \N \}$ or $\{ x : x \in \N \}$ - '$:$' or '$|$' \begin{description} \item[Axiom of Extensionality / Set Equality] $A = B \iff \forall x. (x \in A \iff x \in B)$ \item[$A \subseteq B$] \quad $\forall x \in A. x \in B$ \\ Is transitive, reflexive, antisymmetric \item[$A \subset B$] \quad $(\forall x \in A.~x \in B) \land (\exists x \in B.~x \not\in A)$ \\ Is transitive, antisymmetric \item[$\varnothing$] $\{\}$ \item[$\cup$] Union \item[$\cap$] Intersection \item[$A \setminus B$] \quad $\{ x \in A : x \not\in B \}$ \end{description} \end{document}