\input{decls.tex} \title{Polynomials} \begin{document} \maketitle \begin{itemize}[leftmargin=10em] \item[Polynomial in $\C$] \quad $\forall n \in \N, a_{i \in [0, n]} \in \C, a_n \neq 0. \quad P(x) = \sum_{i=0}^{n} a_{i}x^i$ \item[Degree] \quad $n$ \item[Leading Coefficient] \quad $a_n$ \item[Monic Polynomial] \quad Polynomial with $a_n = 1$ \end{itemize} The Abel-Ruffini theorem states that there exists a degree-5 polynomial with roots that cannot be expressed with $+ - * / \surd$ \section*{Rational Root Theorem} \[ \forall \text{ polynomials } P(x) \text { with } \forall i. a_i \in \Z.\quad \forall \frac{p}{q} \in \Q.~P\paren{\frac{p}{q}} = 0 \implies p|a_0 \land q|a_n \\ % x|y x divides y \] This means that monic polynomials have no rational non-integral roots. \section*{Polynomial Division} \[\forall P(x), D(x).~ \exists Q(x), R(x).~ P(x) = D(x)Q(x) + R(x), \operatorname{degree}(R) < \operatorname{degree}(D)\] \section*{Remainder Theorem} \[\forall P(x), c. P(c) = 0 \iff \paren{x - c}|P(x)\] Proof: \begin{align*} \text{Given that }& P(c) = 0: \\ & \exists Q(x), R(x).~P(x) = Q(x)(x - c) + R(x) & \text{Division of polynomials} \\ & P(c) = Q(c)(c - c) + R(c) & \\ & 0 = Q(c)(0) + R(c) & \\ & R(c) = 0 & \\ & \forall x.~R(x) = 0 & \text{As $D(x)$ has degree $1$, $R(x)$ must have degree $0$} \\ & \therefore~(x - c)|P(x) \\ \text{Given that }& (x - c)|P(x) \\ & \exists Q(x).~P(x) = Q(x)(x - c) & \text{Division of polynomials, remainder $0$} \\ & \therefore~P(c) = Q(c)(c - c) = 0\cdot Q(c) = 0 \end{align*} \end{document}