\input{decls.tex} \title{Sets} \begin{document} \maketitle Set comprehensions can be written $\{ x | x \in \N \}$ or $\{ x : x \in \N \}$ - '$:$' or '$|$' \\ Sets are defined entirely by the values of $x$ for which $x \in A$ \begin{description} \item[Axiom of Extensionality / Set Equality] $A = B \iff \forall x. (x \in A \iff x \in B)$ \item[$A \subseteq B$] \quad $\forall x \in A. x \in B$ \\ Is transitive, reflexive, antisymmetric \item[$A \subset B$] \quad $(\forall x \in A.~x \in B) \land (\exists x \in B.~x \not\in A)$ \\ Is transitive, antisymmetric \item[$\varnothing$] $\{\}$ \item[$\cup$] Union \item[$\cap$] Intersection \item[$A \setminus B$] \quad $\{ x \in A : x \not\in B \}$ \item[$A^\complement$]\quad $U \setminus A$ \item[$[a, b)$] \quad $\{ x \in \R : a \leq x < b \}$ \end{description} \begin{align*} C \setminus (A \cup B) \equiv & ~ (C \setminus A) \cap (C \setminus B) \\ C \setminus (A \cap B) \equiv & ~ (C \setminus A) \cup (C \setminus B) \\ (A^\complement)^\complement \equiv & ~ A \\ A^\complement \cup B^\complement \equiv & ~ (A \cap B)^\complement \\ A^\complement \cap B^\complement \equiv & ~ (A \cup B)^\complement \end{align*} \section*{Families of Sets} A family of sets indexed by a set $I$ (the indexing set): $A_i ~~\forall~i\in I (\equiv (A_i)_{i\in I})$ \\ $A_i$ is a set for every element $i \in I$ \\ A family of sets indexed by $\N$ is called a sequence of sets. Also written $(B_i)^{\inf}_{i=0}$ or $(B_i)_{i \geq 0}$ \begin{align*} \bigcup_{i \in I}~A_i \equiv \{x | \exists i \in I. x \in A_i \} \\ \bigcap_{i \in I}~A_i \equiv \{x | \forall i \in I. x \in A_i \} & \text{ Exists iff } \exists~i\in I \end{align*} \begin{align*} & \forall i \in I. A_i \subseteq \cup_{j \in I}A_j \\ & \forall i \in I. A_i \subseteq B \implies \cup_{j \in I}A_j \subseteq B \\ & \forall i \in I.\cap_{j \in I}A_j \subseteq A_i \\ & \forall i \in I. B \subseteq A_i \implies B \subseteq \cap_{j \in I}A_j \\ \\ & B \cup \cap_{i \in I}A_i = \cup_{i \in I}(B \cap A_i) \\ & B \cap \cup_{i \in I}A_i = \cap_{i \in I}(B \cup A_i) \\ & B \setminus \cup_{i \in I}A_i = \cap_{i\in I}(B\setminus A_i) \\ & B \setminus \cap_{i \in I}A_i = \cup_{i\in I}(B \setminus A_i) \end{align*} \section*{Cartesian Products} Ordered pairs can be represented as $(x, y) \equiv \{x, \{x, y\}\}$ \\ $X \times Y = \{ (x, y) |~ \forall x, y.~x \in X \land y \in Y\}$ for sets $X$, $Y$ \\ $X^n$ is $X\times X^{n-1}$ for set $X$ and natural $n$ \\ $\card{X\times Y} = \card{X} \times \card{Y}$ (for finite $X$, $Y$) \section*{Functions} For sets $X$, $Y$: \begin{description} \item[A function $F: X \to Y$] $\subseteq X\times Y$ \text { where } \\ $\forall x \in X.~\exists \text{ a unique } F(x) \in Y.~ (x, F(x)) \in F$ \\ There exist $\card{Y}^{\card{X}}$ functions $F: X \to Y$ \item[$\operatorname{dom}(F)$] The domain of $F$, i.e. $X$ \item[$\operatorname{incl}^X_A : A \to X$] $= a \quad \forall A,X. \text{ where } A \subseteq X$ \item[Constant function] $\exists y_0 \in Y.~\forall x \in X.~ f(x) = y_0$ \item[Characteristic Function of a set $A \subseteq X$: $\chi_A: X \to \{0, 1\}$] \[ \chi_A: X \to \{0, 1\} = \left\{\begin{array}{lr} 0 & \text{ if } x \not\in A \\ 1 & \text{ if } x \in A \end{array} \right. \] \item[Restriction of a function $f: X \to Y$] $\restr{f}{A}$ is $f$ specialized contravariantly to $A \subseteq X$ \item[$f(A)$: Image of $A$ under $f$] $f$ mapped over $A$ \quad for function $f: X \to Y$, $A \subseteq X$ \item[$\operatorname{ran}(f)$ / image of $f$ / range of $f$] $\{ f(x) | x \in X \}$, $f(X)$, i.e. all possible values of $f(x)$ \item[Preimage of $B$ under $f$] $\{ x \in X ~|~ f(x) \in B \}$ \\ written $f^{-1}(B)$, but is \emph{not} the inverse of f \end{description} For $f: X \to Y$, $A \subseteq A' \subseteq X$, $B \subseteq B' \subseteq Y$: \begin{align*} f(A) \subseteq~& f(A') \\ f^{-1}(B) \subseteq ~& f^{-1}(B') \\ f^{-1}(f(A)) \supseteq ~& A \\ f(f^{-1}(B)) \subseteq ~& B \end{align*} For set families $(A_i \subseteq X)_{i \in I}, (B_j \subseteq Y)_{j \in J}$: \begin{align*} f(\cup_{i \in I} A_i) = ~& \cup_{i \in I}f(A_i) \\ f(\cap_{i \in I} A_i) \subseteq ~& \cap_{i \in I}f(A_i) \\ f^{-1}(\cup_{j \in J} B_j) = ~& \cup_{j \in J} f^{-1}(B_j) \\ f^{-1}(\cap_{j \in J} B_j) = ~& \cap_{j \in J} f^{-1}(B_j) \end{align*} \section*{Function Composition} For functions $f: X \to Y$, $g: Y \to Z$: \begin{align*} & (g \circ f): X \to Z \\ & (g\circ f)(x) = g(f(x)) & \forall x \in X \\ \\ \end{align*} \section*{Surjection and Injection} For $f: X \to Y$, $f$ is \begin{description} \item[surjective] iff $f(X) = Y$, i.e. $\forall y \in Y.~ \exists x \in X.~ f(x) = y$ \\ Range is codomain, 'onto' \item[injective] iff $\forall x, x' \in X. ~ f(x) = f(x') \implies x = x'$ \item[bijective] iff $f$ is injective and $f$ is surjective \end{description} \end{document}