Update dependencies

This commit is contained in:
bluepython508
2024-11-01 17:33:34 +00:00
parent 033ac0b400
commit 5cdfab398d
3596 changed files with 1033483 additions and 259 deletions

213
vendor/github.com/gaissmai/bart/stringify.go generated vendored Normal file
View File

@@ -0,0 +1,213 @@
// Copyright (c) 2024 Karl Gaissmaier
// SPDX-License-Identifier: MIT
package bart
import (
"bytes"
"fmt"
"io"
"net/netip"
"slices"
"strings"
)
// kid, a node has no path information about its predecessors,
// we collect this during the recursive descent.
// The path/depth/idx is needed to get the CIDR back.
type kid[V any] struct {
// for traversing
n *node[V]
path [16]byte
depth int
idx uint
// for printing
cidr netip.Prefix
val V
}
// MarshalText implements the encoding.TextMarshaler interface,
// just a wrapper for [Table.Fprint].
func (t *Table[V]) MarshalText() ([]byte, error) {
t.init()
w := new(bytes.Buffer)
if err := t.Fprint(w); err != nil {
return nil, err
}
return w.Bytes(), nil
}
// String returns a hierarchical tree diagram of the ordered CIDRs
// as string, just a wrapper for [Table.Fprint].
// If Fprint returns an error, String panics.
func (t *Table[V]) String() string {
t.init()
w := new(strings.Builder)
if err := t.Fprint(w); err != nil {
panic(err)
}
return w.String()
}
// Fprint writes a hierarchical tree diagram of the ordered CIDRs to w.
// If w is nil, Fprint panics.
//
// The order from top to bottom is in ascending order of the prefix address
// and the subtree structure is determined by the CIDRs coverage.
//
// ▼
// ├─ 10.0.0.0/8 (9.9.9.9)
// │ ├─ 10.0.0.0/24 (8.8.8.8)
// │ └─ 10.0.1.0/24 (10.0.0.0)
// ├─ 127.0.0.0/8 (127.0.0.1)
// │ └─ 127.0.0.1/32 (127.0.0.1)
// ├─ 169.254.0.0/16 (10.0.0.0)
// ├─ 172.16.0.0/12 (8.8.8.8)
// └─ 192.168.0.0/16 (9.9.9.9)
// └─ 192.168.1.0/24 (127.0.0.1)
// ▼
// └─ ::/0 (2001:db8::1)
// ├─ ::1/128 (::1%lo)
// ├─ 2000::/3 (2001:db8::1)
// │ └─ 2001:db8::/32 (2001:db8::1)
// └─ fe80::/10 (::1%eth0)
func (t *Table[V]) Fprint(w io.Writer) error {
t.init()
if err := t.fprint(w, true); err != nil {
return err
}
if err := t.fprint(w, false); err != nil {
return err
}
return nil
}
// fprint is the version dependent adapter to fprintRec.
func (t *Table[V]) fprint(w io.Writer, is4 bool) error {
n := t.rootNodeByVersion(is4)
if n.isEmpty() {
return nil
}
if _, err := fmt.Fprint(w, "▼\n"); err != nil {
return err
}
if err := n.fprintRec(w, 0, zeroPath, 0, is4, ""); err != nil {
return err
}
return nil
}
// fprintRec, the output is a hierarchical CIDR tree starting with parentIdx and byte path.
func (n *node[V]) fprintRec(w io.Writer, parentIdx uint, path [16]byte, depth int, is4 bool, pad string) error {
// get direct childs for this parentIdx ...
directKids := n.getKidsRec(parentIdx, path, depth, is4)
// sort them by netip.Prefix, not by baseIndex
slices.SortFunc(directKids, cmpKidByPrefix[V])
// symbols used in tree
glyphe := "├─ "
spacer := "│ "
// for all direct kids under this node ...
for i, kid := range directKids {
// ... treat last kid special
if i == len(directKids)-1 {
glyphe = "└─ "
spacer = " "
}
// print prefix and val, padded with glyphe
if _, err := fmt.Fprintf(w, "%s%s (%v)\n", pad+glyphe, kid.cidr, kid.val); err != nil {
return err
}
// rec-descent with this prefix as parentIdx.
// hierarchical nested tree view, two rec-descent functions
// work together to spoil the reader.
if err := kid.n.fprintRec(w, kid.idx, kid.path, kid.depth, is4, pad+spacer); err != nil {
return err
}
}
return nil
}
// getKidsRec, returns the direct kids below path and parentIdx.
// It's a recursive monster together with printRec,
// you have to know the data structure by heart to understand this function!
//
// See the artlookup.pdf paper in the doc folder,
// the baseIndex function is the key.
func (n *node[V]) getKidsRec(parentIdx uint, path [16]byte, depth int, is4 bool) []kid[V] {
directKids := []kid[V]{}
// make backing arrays, no heap allocs
idxBackingArray := [maxNodePrefixes]uint{}
for _, idx := range n.allStrideIndexes(idxBackingArray[:]) {
// parent or self, handled alreday in an upper stack frame.
if idx <= parentIdx {
continue
}
// check if lpmIdx for this idx' parent is equal to parentIdx
lpmIdx, _, _ := n.lpm(idx >> 1)
if lpmIdx == parentIdx {
// idx is directKid
val, _ := n.getValue(idx)
cidr, _ := cidrFromPath(path, depth, is4, idx)
directKids = append(directKids, kid[V]{n, path, depth, idx, cidr, val})
}
}
// the node may have childs, the rec-descent monster starts
addrBackingArray := [maxNodeChildren]uint{}
for i, addr := range n.allChildAddrs(addrBackingArray[:]) {
octet := byte(addr)
// do a longest-prefix-match
lpmIdx, _, _ := n.lpm(octetToBaseIndex(octet))
if lpmIdx == parentIdx {
c := n.children[i]
path[depth] = octet
// traverse, rec-descent call with next child node
directKids = append(directKids, c.getKidsRec(0, path, depth+1, is4)...)
}
}
return directKids
}
// cidrFromPath, get prefix back from byte path, depth, octet and pfxLen.
func cidrFromPath(path [16]byte, depth int, is4 bool, idx uint) (netip.Prefix, error) {
octet, pfxLen := baseIndexToPrefix(idx)
// set (partially) masked byte in path at depth
path[depth] = octet
// make ip addr from octets
var ip netip.Addr
if is4 {
b4 := [4]byte{}
copy(b4[:], path[:4])
ip = netip.AddrFrom4(b4)
} else {
ip = netip.AddrFrom16(path)
}
// calc bits with pathLen and pfxLen
bits := depth*strideLen + pfxLen
// make a normalized prefix from ip/bits
return ip.Prefix(bits)
}
// cmpKidByPrefix, all prefixes are already normalized (Masked).
func cmpKidByPrefix[V any](a, b kid[V]) int {
return cmpPrefix(a.cidr, b.cidr)
}