264 lines
6.0 KiB
Go
264 lines
6.0 KiB
Go
// Copyright (c) 2024 Karl Gaissmaier
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
package bart
|
|
|
|
import (
|
|
"bytes"
|
|
"cmp"
|
|
"fmt"
|
|
"io"
|
|
"net/netip"
|
|
"slices"
|
|
"strings"
|
|
)
|
|
|
|
// kid, a node has no path information about its predecessors,
|
|
// we collect this during the recursive descent.
|
|
// The path/depth/idx is needed to get the CIDR back.
|
|
type kid[V any] struct {
|
|
// for traversing
|
|
n *node[V]
|
|
is4 bool
|
|
path stridePath
|
|
depth int
|
|
idx uint
|
|
|
|
// for printing
|
|
cidr netip.Prefix
|
|
val V
|
|
}
|
|
|
|
// MarshalText implements the [encoding.TextMarshaler] interface,
|
|
// just a wrapper for [Table.Fprint].
|
|
func (t *Table[V]) MarshalText() ([]byte, error) {
|
|
w := new(bytes.Buffer)
|
|
if err := t.Fprint(w); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return w.Bytes(), nil
|
|
}
|
|
|
|
// String returns a hierarchical tree diagram of the ordered CIDRs
|
|
// as string, just a wrapper for [Table.Fprint].
|
|
// If Fprint returns an error, String panics.
|
|
func (t *Table[V]) String() string {
|
|
w := new(strings.Builder)
|
|
if err := t.Fprint(w); err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
return w.String()
|
|
}
|
|
|
|
// Fprint writes a hierarchical tree diagram of the ordered CIDRs
|
|
// with default formatted payload V to w. If w is nil, Fprint panics.
|
|
//
|
|
// The order from top to bottom is in ascending order of the prefix address
|
|
// and the subtree structure is determined by the CIDRs coverage.
|
|
//
|
|
// ▼
|
|
// ├─ 10.0.0.0/8 (V)
|
|
// │ ├─ 10.0.0.0/24 (V)
|
|
// │ └─ 10.0.1.0/24 (V)
|
|
// ├─ 127.0.0.0/8 (V)
|
|
// │ └─ 127.0.0.1/32 (V)
|
|
// ├─ 169.254.0.0/16 (V)
|
|
// ├─ 172.16.0.0/12 (V)
|
|
// └─ 192.168.0.0/16 (V)
|
|
// └─ 192.168.1.0/24 (V)
|
|
// ▼
|
|
// └─ ::/0 (V)
|
|
// ├─ ::1/128 (V)
|
|
// ├─ 2000::/3 (V)
|
|
// │ └─ 2001:db8::/32 (V)
|
|
// └─ fe80::/10 (V)
|
|
func (t *Table[V]) Fprint(w io.Writer) error {
|
|
// v4
|
|
if err := t.fprint(w, true); err != nil {
|
|
return err
|
|
}
|
|
|
|
// v6
|
|
if err := t.fprint(w, false); err != nil {
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// fprint is the version dependent adapter to fprintRec.
|
|
func (t *Table[V]) fprint(w io.Writer, is4 bool) error {
|
|
n := t.rootNodeByVersion(is4)
|
|
if n.isEmpty() {
|
|
return nil
|
|
}
|
|
|
|
if _, err := fmt.Fprint(w, "▼\n"); err != nil {
|
|
return err
|
|
}
|
|
|
|
startKid := kid[V]{
|
|
n: nil,
|
|
idx: 0,
|
|
path: stridePath{},
|
|
is4: is4,
|
|
}
|
|
|
|
if err := n.fprintRec(w, startKid, ""); err != nil {
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// fprintRec, the output is a hierarchical CIDR tree starting with this kid.
|
|
func (n *node[V]) fprintRec(w io.Writer, parent kid[V], pad string) error {
|
|
// recursion stop condition
|
|
if n == nil {
|
|
return nil
|
|
}
|
|
|
|
// get direct childs for this kid ...
|
|
directKids := n.getKidsRec(parent.idx, parent.path, parent.depth, parent.is4)
|
|
|
|
// sort them by netip.Prefix, not by baseIndex
|
|
slices.SortFunc(directKids, cmpKidByPrefix[V])
|
|
|
|
// symbols used in tree
|
|
glyphe := "├─ "
|
|
spacer := "│ "
|
|
|
|
// for all direct kids under this node ...
|
|
for i, kid := range directKids {
|
|
// ... treat last kid special
|
|
if i == len(directKids)-1 {
|
|
glyphe = "└─ "
|
|
spacer = " "
|
|
}
|
|
|
|
// print prefix and val, padded with glyphe
|
|
if _, err := fmt.Fprintf(w, "%s%s (%v)\n", pad+glyphe, kid.cidr, kid.val); err != nil {
|
|
return err
|
|
}
|
|
|
|
// rec-descent with this prefix as parentIdx.
|
|
// hierarchical nested tree view, two rec-descent functions
|
|
// work together to spoil the reader.
|
|
if err := kid.n.fprintRec(w, kid, pad+spacer); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// getKidsRec, returns the direct kids below path and parentIdx.
|
|
// It's a recursive monster together with printRec,
|
|
// you have to know the data structure by heart to understand this function!
|
|
//
|
|
// See the artlookup.pdf paper in the doc folder,
|
|
// the baseIndex function is the key.
|
|
func (n *node[V]) getKidsRec(parentIdx uint, path stridePath, depth int, is4 bool) []kid[V] {
|
|
// recursion stop condition
|
|
if n == nil {
|
|
return nil
|
|
}
|
|
|
|
var directKids []kid[V]
|
|
|
|
for _, idx := range n.prefixes.All() {
|
|
// parent or self, handled alreday in an upper stack frame.
|
|
if idx <= parentIdx {
|
|
continue
|
|
}
|
|
|
|
// check if lpmIdx for this idx' parent is equal to parentIdx
|
|
lpmIdx, _, _ := n.lpmGet(idx >> 1)
|
|
|
|
// if idx is directKid?
|
|
if lpmIdx == parentIdx {
|
|
cidr := cidrFromPath(path, depth, is4, idx)
|
|
|
|
kid := kid[V]{
|
|
n: n,
|
|
is4: is4,
|
|
path: path,
|
|
depth: depth,
|
|
idx: idx,
|
|
cidr: cidr,
|
|
val: n.prefixes.MustGet(idx),
|
|
}
|
|
|
|
directKids = append(directKids, kid)
|
|
}
|
|
}
|
|
|
|
// the node may have childs and leaves, the rec-descent monster starts
|
|
for i, addr := range n.children.All() {
|
|
// do a longest-prefix-match
|
|
lpmIdx, _, _ := n.lpmGet(hostIndex(addr))
|
|
if lpmIdx == parentIdx {
|
|
switch k := n.children.Items[i].(type) {
|
|
case *node[V]:
|
|
path[depth] = byte(addr)
|
|
|
|
// traverse, rec-descent call with next child node
|
|
directKids = append(directKids, k.getKidsRec(0, path, depth+1, is4)...)
|
|
case *leaf[V]:
|
|
kid := kid[V]{
|
|
n: nil, // path compressed item, stop recursion
|
|
is4: is4,
|
|
cidr: k.prefix,
|
|
val: k.value,
|
|
}
|
|
|
|
directKids = append(directKids, kid)
|
|
}
|
|
}
|
|
}
|
|
|
|
return directKids
|
|
}
|
|
|
|
// cmpKidByPrefix, all prefixes are already normalized (Masked).
|
|
func cmpKidByPrefix[V any](a, b kid[V]) int {
|
|
return cmpPrefix(a.cidr, b.cidr)
|
|
}
|
|
|
|
// cmpPrefix, compare func for prefix sort,
|
|
// all cidrs are already normalized
|
|
func cmpPrefix(a, b netip.Prefix) int {
|
|
if cmp := a.Addr().Compare(b.Addr()); cmp != 0 {
|
|
return cmp
|
|
}
|
|
|
|
return cmp.Compare(a.Bits(), b.Bits())
|
|
}
|
|
|
|
// cidrFromPath, get prefix back from byte path, depth, octet and pfxLen.
|
|
func cidrFromPath(path stridePath, depth int, is4 bool, idx uint) netip.Prefix {
|
|
octet, pfxLen := idxToPfx(idx)
|
|
|
|
// set masked byte in path at depth
|
|
path[depth] = octet
|
|
|
|
// zero/mask the bytes after prefix bits
|
|
clear(path[depth+1:])
|
|
|
|
// make ip addr from octets
|
|
var ip netip.Addr
|
|
if is4 {
|
|
ip = netip.AddrFrom4([4]byte(path[:4]))
|
|
} else {
|
|
ip = netip.AddrFrom16(path)
|
|
}
|
|
|
|
// calc bits with pathLen and pfxLen
|
|
bits := depth<<3 + pfxLen
|
|
|
|
// return a normalized prefix from ip/bits
|
|
return netip.PrefixFrom(ip, bits)
|
|
}
|