Files
tsnet-proxy/vendor/gvisor.dev/gvisor/pkg/buffer/buffer.go
2025-04-09 01:00:12 +01:00

661 lines
15 KiB
Go

// Copyright 2022 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package buffer provides the implementation of a non-contiguous buffer that
// is reference counted, pooled, and copy-on-write. It allows O(1) append,
// and prepend operations.
package buffer
import (
"fmt"
"io"
"gvisor.dev/gvisor/pkg/tcpip/checksum"
)
// Buffer is a non-linear buffer.
//
// +stateify savable
type Buffer struct {
data ViewList `state:".([]byte)"`
size int64
}
func (b *Buffer) removeView(v *View) {
b.data.Remove(v)
v.Release()
}
// MakeWithData creates a new Buffer initialized with given data. This function
// should be used with caution to avoid unnecessary []byte allocations. When in
// doubt use NewWithView to maximize chunk reuse.
func MakeWithData(b []byte) Buffer {
buf := Buffer{}
if len(b) == 0 {
return buf
}
v := NewViewWithData(b)
buf.Append(v)
return buf
}
// MakeWithView creates a new Buffer initialized with given view. This function
// takes ownership of v.
func MakeWithView(v *View) Buffer {
if v == nil {
return Buffer{}
}
b := Buffer{
size: int64(v.Size()),
}
if b.size == 0 {
v.Release()
return b
}
b.data.PushBack(v)
return b
}
// Release frees all resources held by b.
func (b *Buffer) Release() {
for v := b.data.Front(); v != nil; v = b.data.Front() {
b.removeView(v)
}
b.size = 0
}
// TrimFront removes the first count bytes from the buffer.
func (b *Buffer) TrimFront(count int64) {
if count >= b.size {
b.advanceRead(b.size)
} else {
b.advanceRead(count)
}
}
// ReadAt implements io.ReaderAt.ReadAt.
func (b *Buffer) ReadAt(p []byte, offset int64) (int, error) {
var (
skipped int64
done int64
)
for v := b.data.Front(); v != nil && done < int64(len(p)); v = v.Next() {
needToSkip := int(offset - skipped)
if sz := v.Size(); sz <= needToSkip {
skipped += int64(sz)
continue
}
// Actually read data.
n := copy(p[done:], v.AsSlice()[needToSkip:])
skipped += int64(needToSkip)
done += int64(n)
}
if int(done) < len(p) || offset+done == b.size {
return int(done), io.EOF
}
return int(done), nil
}
// advanceRead advances the Buffer's read index.
//
// Precondition: there must be sufficient bytes in the buffer.
func (b *Buffer) advanceRead(count int64) {
for v := b.data.Front(); v != nil && count > 0; {
sz := int64(v.Size())
if sz > count {
// There is still data for reading.
v.TrimFront(int(count))
b.size -= count
count = 0
return
}
// Consume the whole view.
oldView := v
v = v.Next() // Iterate.
b.removeView(oldView)
// Update counts.
count -= sz
b.size -= sz
}
if count > 0 {
panic(fmt.Sprintf("advanceRead still has %d bytes remaining", count))
}
}
// Truncate truncates the Buffer to the given length.
//
// This will not grow the Buffer, only shrink it. If a length is passed that is
// greater than the current size of the Buffer, then nothing will happen.
//
// Precondition: length must be >= 0.
func (b *Buffer) Truncate(length int64) {
if length < 0 {
panic("negative length provided")
}
if length >= b.size {
return // Nothing to do.
}
for v := b.data.Back(); v != nil && b.size > length; v = b.data.Back() {
sz := int64(v.Size())
if after := b.size - sz; after < length {
// Truncate the buffer locally.
left := (length - after)
v.write = v.read + int(left)
b.size = length
break
}
// Drop the buffer completely; see above.
b.removeView(v)
b.size -= sz
}
}
// GrowTo grows the given Buffer to the number of bytes, which will be appended.
// If zero is true, all these bytes will be zero. If zero is false, then this is
// the caller's responsibility.
//
// Precondition: length must be >= 0.
func (b *Buffer) GrowTo(length int64, zero bool) {
if length < 0 {
panic("negative length provided")
}
for b.size < length {
v := b.data.Back()
// Is there some space in the last buffer?
if v.Full() {
v = NewView(int(length - b.size))
b.data.PushBack(v)
}
// Write up to length bytes.
sz := v.AvailableSize()
if int64(sz) > length-b.size {
sz = int(length - b.size)
}
// Zero the written section.
if zero {
clear(v.chunk.data[v.write : v.write+sz])
}
// Advance the index.
v.Grow(sz)
b.size += int64(sz)
}
}
// Prepend prepends the given data. Prepend takes ownership of src.
func (b *Buffer) Prepend(src *View) error {
if src == nil {
return nil
}
if src.Size() == 0 {
src.Release()
return nil
}
// If the first buffer does not have room just prepend the view.
v := b.data.Front()
if v == nil || v.read == 0 {
b.prependOwned(src)
return nil
}
// If there's room at the front and we won't incur a copy by writing to this
// view, fill in the extra room first.
if !v.sharesChunk() {
avail := v.read
vStart := 0
srcStart := src.Size() - avail
if avail > src.Size() {
vStart = avail - src.Size()
srcStart = 0
}
// Save the write index and restore it after.
old := v.write
v.read = vStart
n, err := v.WriteAt(src.AsSlice()[srcStart:], 0)
if err != nil {
return fmt.Errorf("could not write to view during append: %w", err)
}
b.size += int64(n)
v.write = old
src.write = srcStart
// If there's no more to be written, then we're done.
if src.Size() == 0 {
src.Release()
return nil
}
}
// Otherwise, just prepend the view.
b.prependOwned(src)
return nil
}
// Append appends the given data. Append takes ownership of src.
func (b *Buffer) Append(src *View) error {
if src == nil {
return nil
}
if src.Size() == 0 {
src.Release()
return nil
}
// If the last buffer is full, just append the view.
v := b.data.Back()
if v.Full() {
b.appendOwned(src)
return nil
}
// If a write won't incur a copy, then fill the back of the existing last
// chunk.
if !v.sharesChunk() {
writeSz := src.Size()
if src.Size() > v.AvailableSize() {
writeSz = v.AvailableSize()
}
done, err := v.Write(src.AsSlice()[:writeSz])
if err != nil {
return fmt.Errorf("could not write to view during append: %w", err)
}
src.TrimFront(done)
b.size += int64(done)
if src.Size() == 0 {
src.Release()
return nil
}
}
// If there is still data left just append the src.
b.appendOwned(src)
return nil
}
func (b *Buffer) appendOwned(v *View) {
b.data.PushBack(v)
b.size += int64(v.Size())
}
func (b *Buffer) prependOwned(v *View) {
b.data.PushFront(v)
b.size += int64(v.Size())
}
// PullUp makes the specified range contiguous and returns the backing memory.
func (b *Buffer) PullUp(offset, length int) (View, bool) {
if length == 0 {
return View{}, true
}
tgt := Range{begin: offset, end: offset + length}
if tgt.Intersect(Range{end: int(b.size)}).Len() != length {
return View{}, false
}
curr := Range{}
v := b.data.Front()
for ; v != nil; v = v.Next() {
origLen := v.Size()
curr.end = curr.begin + origLen
if x := curr.Intersect(tgt); x.Len() == tgt.Len() {
// buf covers the whole requested target range.
sub := x.Offset(-curr.begin)
if v.sharesChunk() {
old := v.chunk
v.chunk = v.chunk.Clone()
old.DecRef()
}
new := View{
read: v.read + sub.begin,
write: v.read + sub.end,
chunk: v.chunk,
}
return new, true
} else if x.Len() > 0 {
// buf is pointing at the starting buffer we want to merge.
break
}
curr.begin += origLen
}
// Calculate the total merged length.
totLen := 0
for n := v; n != nil; n = n.Next() {
totLen += n.Size()
if curr.begin+totLen >= tgt.end {
break
}
}
// Merge the buffers.
merged := NewViewSize(totLen)
off := 0
for n := v; n != nil && off < totLen; {
merged.WriteAt(n.AsSlice(), off)
off += n.Size()
// Remove buffers except for the first one, which will be reused.
if n == v {
n = n.Next()
} else {
old := n
n = n.Next()
b.removeView(old)
}
}
// Make data the first buffer.
b.data.InsertBefore(v, merged)
b.removeView(v)
r := tgt.Offset(-curr.begin)
pulled := View{
read: r.begin,
write: r.end,
chunk: merged.chunk,
}
return pulled, true
}
// Flatten returns a flattened copy of this data.
//
// This method should not be used in any performance-sensitive paths. It may
// allocate a fresh byte slice sufficiently large to contain all the data in
// the buffer. This is principally for debugging.
//
// N.B. Tee data still belongs to this Buffer, as if there is a single buffer
// present, then it will be returned directly. This should be used for
// temporary use only, and a reference to the given slice should not be held.
func (b *Buffer) Flatten() []byte {
if v := b.data.Front(); v == nil {
return nil // No data at all.
}
data := make([]byte, 0, b.size) // Need to flatten.
for v := b.data.Front(); v != nil; v = v.Next() {
// Copy to the allocated slice.
data = append(data, v.AsSlice()...)
}
return data
}
// Size indicates the total amount of data available in this Buffer.
func (b *Buffer) Size() int64 {
return b.size
}
// AsViewList returns the ViewList backing b. Users may not save or modify the
// ViewList returned.
func (b *Buffer) AsViewList() ViewList {
return b.data
}
// Clone creates a copy-on-write clone of b. The underlying chunks are shared
// until they are written to.
func (b *Buffer) Clone() Buffer {
other := Buffer{
size: b.size,
}
for v := b.data.Front(); v != nil; v = v.Next() {
newView := v.Clone()
other.data.PushBack(newView)
}
return other
}
// DeepClone creates a deep clone of b, copying data such that no bytes are
// shared with any other Buffers.
func (b *Buffer) DeepClone() Buffer {
newBuf := Buffer{}
buf := b.Clone()
reader := buf.AsBufferReader()
newBuf.WriteFromReader(&reader, b.size)
return newBuf
}
// Apply applies the given function across all valid data.
func (b *Buffer) Apply(fn func(*View)) {
for v := b.data.Front(); v != nil; v = v.Next() {
d := v.Clone()
fn(d)
d.Release()
}
}
// SubApply applies fn to a given range of data in b. Any part of the range
// outside of b is ignored.
func (b *Buffer) SubApply(offset, length int, fn func(*View)) {
for v := b.data.Front(); length > 0 && v != nil; v = v.Next() {
if offset >= v.Size() {
offset -= v.Size()
continue
}
d := v.Clone()
if offset > 0 {
d.TrimFront(offset)
offset = 0
}
if length < d.Size() {
d.write = d.read + length
}
fn(d)
length -= d.Size()
d.Release()
}
}
// Checksum calculates a checksum over the buffer's payload starting at offset.
func (b *Buffer) Checksum(offset int) uint16 {
if offset >= int(b.size) {
return 0
}
var v *View
for v = b.data.Front(); v != nil && offset >= v.Size(); v = v.Next() {
offset -= v.Size()
}
var cs checksum.Checksumer
cs.Add(v.AsSlice()[offset:])
for v = v.Next(); v != nil; v = v.Next() {
cs.Add(v.AsSlice())
}
return cs.Checksum()
}
// Merge merges the provided Buffer with this one.
//
// The other Buffer will be appended to v, and other will be empty after this
// operation completes.
func (b *Buffer) Merge(other *Buffer) {
b.data.PushBackList(&other.data)
other.data = ViewList{}
// Adjust sizes.
b.size += other.size
other.size = 0
}
// WriteFromReader writes to the buffer from an io.Reader. A maximum read size
// of MaxChunkSize is enforced to prevent allocating views from the heap.
func (b *Buffer) WriteFromReader(r io.Reader, count int64) (int64, error) {
return b.WriteFromReaderAndLimitedReader(r, count, nil)
}
// WriteFromReaderAndLimitedReader is the same as WriteFromReader, but
// optimized to avoid allocations if a LimitedReader is passed in.
//
// This function clobbers the values of lr.
func (b *Buffer) WriteFromReaderAndLimitedReader(r io.Reader, count int64, lr *io.LimitedReader) (int64, error) {
if lr == nil {
lr = &io.LimitedReader{}
}
var done int64
for done < count {
vsize := count - done
if vsize > MaxChunkSize {
vsize = MaxChunkSize
}
v := NewView(int(vsize))
lr.R = r
lr.N = vsize
n, err := io.Copy(v, lr)
b.Append(v)
done += n
if err == io.EOF {
break
}
if err != nil {
return done, err
}
}
return done, nil
}
// ReadToWriter reads from the buffer into an io.Writer.
//
// N.B. This does not consume the bytes read. TrimFront should
// be called appropriately after this call in order to do so.
func (b *Buffer) ReadToWriter(w io.Writer, count int64) (int64, error) {
bytesLeft := int(count)
for v := b.data.Front(); v != nil && bytesLeft > 0; v = v.Next() {
view := v.Clone()
if view.Size() > bytesLeft {
view.CapLength(bytesLeft)
}
n, err := io.Copy(w, view)
bytesLeft -= int(n)
view.Release()
if err != nil {
return count - int64(bytesLeft), err
}
}
return count - int64(bytesLeft), nil
}
// read implements the io.Reader interface. This method is used by BufferReader
// to consume its underlying buffer. To perform io operations on buffers
// directly, use ReadToWriter or WriteToReader.
func (b *Buffer) read(p []byte) (int, error) {
if len(p) == 0 {
return 0, nil
}
if b.Size() == 0 {
return 0, io.EOF
}
done := 0
v := b.data.Front()
for v != nil && done < len(p) {
n, err := v.Read(p[done:])
done += n
next := v.Next()
if v.Size() == 0 {
b.removeView(v)
}
b.size -= int64(n)
if err != nil && err != io.EOF {
return done, err
}
v = next
}
return done, nil
}
// readByte implements the io.ByteReader interface. This method is used by
// BufferReader to consume its underlying buffer. To perform io operations on
// buffers directly, use ReadToWriter or WriteToReader.
func (b *Buffer) readByte() (byte, error) {
if b.Size() == 0 {
return 0, io.EOF
}
v := b.data.Front()
bt := v.AsSlice()[0]
b.TrimFront(1)
return bt, nil
}
// AsBufferReader returns the Buffer as a BufferReader capable of io methods.
// The new BufferReader takes ownership of b.
func (b *Buffer) AsBufferReader() BufferReader {
return BufferReader{b}
}
// BufferReader implements io methods on Buffer. Users must call Close()
// when finished with the buffer to free the underlying memory.
type BufferReader struct {
b *Buffer
}
// Read implements the io.Reader interface.
func (br *BufferReader) Read(p []byte) (int, error) {
return br.b.read(p)
}
// ReadByte implements the io.ByteReader interface.
func (br *BufferReader) ReadByte() (byte, error) {
return br.b.readByte()
}
// Close implements the io.Closer interface.
func (br *BufferReader) Close() {
br.b.Release()
}
// Len returns the number of bytes in the unread portion of the buffer.
func (br *BufferReader) Len() int {
return int(br.b.Size())
}
// Range specifies a range of buffer.
type Range struct {
begin int
end int
}
// Intersect returns the intersection of x and y.
func (x Range) Intersect(y Range) Range {
if x.begin < y.begin {
x.begin = y.begin
}
if x.end > y.end {
x.end = y.end
}
if x.begin >= x.end {
return Range{}
}
return x
}
// Offset returns x offset by off.
func (x Range) Offset(off int) Range {
x.begin += off
x.end += off
return x
}
// Len returns the length of x.
func (x Range) Len() int {
l := x.end - x.begin
if l < 0 {
l = 0
}
return l
}