Files
tsnet-proxy/vendor/github.com/hdevalence/ed25519consensus/batch.go
2024-11-01 17:43:06 +00:00

152 lines
4.0 KiB
Go

package ed25519consensus
import (
"crypto/ed25519"
"crypto/rand"
"crypto/sha512"
"filippo.io/edwards25519"
)
// BatchVerifier accumulates batch entries with Add, before performing batch
// verification with Verify.
type BatchVerifier struct {
entries []entry
}
// entry represents a batch entry with the public key, signature and scalar
// which the caller wants to verify.
type entry struct {
good bool // good is true if the Add inputs were valid
pubkey [ed25519.PublicKeySize]byte
signature [ed25519.SignatureSize]byte
digest [64]byte
}
// NewBatchVerifier creates an empty BatchVerifier.
func NewBatchVerifier() BatchVerifier {
return BatchVerifier{
entries: []entry{},
}
}
// NewPreallocatedBatchVerifier creates a new BatchVerifier with
// a preallocated capacity. If you know the size of the batch you plan
// to create ahead of time, this can prevent needless memory copies.
func NewPreallocatedBatchVerifier(size int) BatchVerifier {
return BatchVerifier{
entries: make([]entry, 0, size),
}
}
// Add adds a (public key, message, sig) triple to the current batch. It retains
// no reference to the inputs.
func (v *BatchVerifier) Add(publicKey ed25519.PublicKey, message, sig []byte) {
// Compute the challenge upfront to store it in the fixed-size entry
// structure that can get allocated on the caller stack and avoid heap
// allocations. Also, avoid holding any reference to the arguments.
v.entries = append(v.entries, entry{})
e := &v.entries[len(v.entries)-1]
if len(publicKey) != ed25519.PublicKeySize || len(sig) != ed25519.SignatureSize {
return
}
h := sha512.New()
h.Write(sig[:32])
h.Write(publicKey)
h.Write(message)
h.Sum(e.digest[:0])
copy(e.pubkey[:], publicKey)
copy(e.signature[:], sig)
e.good = true
}
// Verify checks all entries in the current batch, returning true if all entries
// are valid and false if any one entry is invalid.
//
// If a failure arises it is unknown which entry failed, the caller must verify
// each entry individually.
//
// Calling Verify on an empty batch returns false.
func (v *BatchVerifier) Verify() bool {
vl := len(v.entries)
// Abort early on an empty batch, which probably indicates a bug
if vl == 0 {
return false
}
// The batch verification equation is
//
// [-sum(z_i * s_i)]B + sum([z_i]R_i) + sum([z_i * k_i]A_i) = 0.
// where for each signature i,
// - A_i is the verification key;
// - R_i is the signature's R value;
// - s_i is the signature's s value;
// - k_i is the hash of the message and other data;
// - z_i is a random 128-bit Scalar.
svals := make([]edwards25519.Scalar, 1+vl+vl)
scalars := make([]*edwards25519.Scalar, 1+vl+vl)
// Populate scalars variable with concrete scalars to reduce heap allocation
for i := range scalars {
scalars[i] = &svals[i]
}
Bcoeff := scalars[0]
Rcoeffs := scalars[1 : 1+vl]
Acoeffs := scalars[1+vl:]
pvals := make([]edwards25519.Point, 1+vl+vl)
points := make([]*edwards25519.Point, 1+vl+vl)
for i := range points {
points[i] = &pvals[i]
}
B := points[0]
Rs := points[1 : 1+vl]
As := points[1+vl:]
buf := make([]byte, 32)
B.Set(edwards25519.NewGeneratorPoint())
for i, entry := range v.entries {
if !entry.good {
return false
}
if _, err := Rs[i].SetBytes(entry.signature[:32]); err != nil {
return false
}
if _, err := As[i].SetBytes(entry.pubkey[:]); err != nil {
return false
}
if _, err := rand.Read(buf[:16]); err != nil {
return false
}
if _, err := Rcoeffs[i].SetCanonicalBytes(buf); err != nil {
return false
}
s, err := new(edwards25519.Scalar).SetCanonicalBytes(entry.signature[32:])
if err != nil {
return false
}
Bcoeff.MultiplyAdd(Rcoeffs[i], s, Bcoeff)
k, err := new(edwards25519.Scalar).SetUniformBytes(entry.digest[:])
if err != nil {
return false
}
Acoeffs[i].Multiply(Rcoeffs[i], k)
}
Bcoeff.Negate(Bcoeff) // this term is subtracted in the summation
check := new(edwards25519.Point).VarTimeMultiScalarMult(scalars, points)
check.MultByCofactor(check)
return check.Equal(edwards25519.NewIdentityPoint()) == 1
}