Initial work

This commit is contained in:
bluepython508
2023-11-01 08:55:40 +00:00
parent 996ea45153
commit 688d1ec426
48 changed files with 1148 additions and 0 deletions

6
CS1029/notes-2023-09-19 Normal file
View File

@@ -0,0 +1,6 @@
Test in late October & late November, final exams in December (20%, 20%, 80%); all multiple choice?
Books: (reccommended)
- Discrete Mathematics and Its Applications, 8th edition,Kenneth H. Rosen
- Mathematics for Calculus, 6th edition. Stewart et al.

4
CS1029/notes-2023-09-20 Normal file
View File

@@ -0,0 +1,4 @@
Why must we review *rounding*, how negatives multiply, assoc/commut/distrib properties - all of this is early secondary school or primary school!
exponentiation, absolute values
Is this not assumed knowledge?!

2
CS1029/notes-2023-09-26 Normal file
View File

@@ -0,0 +1,2 @@
# Propositional Logic

0
CS1029/notes-2023-10-03 Normal file
View File

0
CS1029/notes-2023-10-10 Normal file
View File

8
CS1029/notes-2023-10-11 Normal file
View File

@@ -0,0 +1,8 @@
image = range
codomain: set that a function is stated to evaluate to; range: values that are possible from a function
onto function: surjection
bijective: injective & surjective
injective: \forall x, y \in \operatorname{Domain}.~ f(x) = f(y) \implies x = y \tag{one-to-one}
surjective: \forall y \in \operatorname{Codomain}.~\exists x \in \operatorname{Domain}.~ f(x) = y \tag{codomain = range}
inverse only a function for bijective functions - not surjective means undefined for some values of the domain, not injective means multi-valued for some values of the domain

1
CS1029/notes-2023-10-17 Normal file
View File

@@ -0,0 +1 @@

1
CS1029/notes-2023-10-18 Normal file
View File

@@ -0,0 +1 @@

0
CS1029/notes-2023-10-24 Normal file
View File

7
CS1029/notes-2023-10-25 Normal file
View File

@@ -0,0 +1,7 @@
Closure of a relation R is the smallest relation containing R and meeting a property
EG. reflexive closure of R (on A) is R | { (a, a) | a \in A }
symmetric closure of R is R | mirror(R)
Equivalent: R is reflexive, symmetric, and transitive - f(x) = f(y) for some function f
Equivalence classes: sets of values which R considers equivalent
disjoint, nonempty subsets of domain

13
CS1029/notes-2023-10-31 Normal file
View File

@@ -0,0 +1,13 @@
Simple Graph: unique connections, no reflexive connections
Multigraphs: multiple connections between two vertices permitted
Directed graphs/digraph
Pseudograph: permits self-links
Degree of vertex in an undirected graph: edges connected to vertex (loops contribute twice)
in a directed graph: in-degree is edges pointing to a vertex, out-degree is pointing out
Pendant vertex has degree 1
Sum of the degree of all vertices in an undirected graphs is twice the number of edges: handshake theorem
Bipartite: can be partitioned into two sets of vertices such that no edge connects two vertices in the same set
Complete bipartite: two vertices are connected \iff they are in seperate partitions
Matching in a bipartite graph: find a subgraph such that all vertices have *exactly* 1 edge attached

View File

@@ -0,0 +1,11 @@
Books: id.loc.gov
Library of Congress linked data
Already in relatively usable formats: XML, JSONLD, etc; further work would be dependent on type of analysis
Disease risk: data.gov.ie - large amounts of discharge data in Health/HSE section
Something could be stitched together estimating risks
Universities: https://www.ucas.com/data-and-analysis/undergraduate-statistics-and-reports
All CSVs in zips

View File

@@ -0,0 +1,6 @@
06. 1 0 1/2 π
07. commutativity (+), commutativity (*), associativity (+), associativity (*), distributivity of * over +
08. 3x+3y 8a-8b 28y-14x 3ab+3ac-6ad
09. 17/30 9/20 3 1/36
11. 100 -12 6/24 2 -1 1
13. 109.9884 48.36 30.24 42313990.36

View File

@@ -0,0 +1,93 @@
01. TFTF----FF
02. a) Linda is older than Sanjay (given that age is continuous)
b) Mei does not make more money than Isabella (salaries are discrete)
c) Moshe is shorter than Monica (height is continuous)
d) Abby is not richer than Ricardo (is wealth continuous?)
e) Quincy is not smarter than Venkat (unquantifiable ∴ continuous)
f) 2 + 1 /= 3
g) The summer in Maine is not hot and sunny
i) Jennifer and Teja are not friends
03. TTFF
4 a) I did not buy a lottery ticket this week
b) I bought a lottery ticket this week and I won the million dollar jackpot
c) If I bought a lottery ticket this week, I won the million dollar jackpot
d) I bought a lottery ticket this week, or I won the million dollar jackpot
e) I bought a lottery ticket if and only if I won the million dollar jackpot
f) If I didn't buy a lottery ticket this week, I didn't win the million dollar jackpot
g) I didn't buy a lottery ticket this week, and I didn't win the million dollar jackpot
h) I didn't buy a lottery ticket this week, or I did buy a lottery ticket this week and I won the million dollar jackpot
-> If I bought a lottery ticket this week, I won the million dollar jackpot
05. a) !p
b) p & !q
c) p -> q
d) !p -> !q
e) p -> q
f) q & !p
g) p <-> q
06. a) r & !p
b) !p & q & r
c) r -> (!p <-> q)
d) !q & !p & r
e) q -> (!r & !p)
f) (p & r) -> !q
07. TFTF
08. FTTT
09. a) If one does not wash the boss's car, one is not promoted
b) If there exist winds from the south, there will exist a spring thaw
c) If the computer was bought less than a year ago, the warranty is good
d) If Willy cheats, he is caught
e) If you do not pay a subscription fee, you cannot access the website
f) If one knows the right people, one is elected
g) If Carol is on a boat, she gets seasick
10. a) p !p p -> !p
T F F
F T T
b) p !p p <-> !p
T F F
F T F
c) p q p ^ (p | q) (== !p & q)
T T F
T F F
F T T
F F F
d) p q (p | q) -> (p & q)
T T T
T F F
F T T
F F T
11. OR AND XOR
111_1111 000_0000 111_1111
1111_1010 1010_0000 0101_1010
10_0111_1001 00_0100_0000 10_0011_1001
12. a) 11000
b) 10001
13.
a) p q r (p | q) ((p | q) | r) (q | r) (p | (q | r))
T T T T T T T
T T F T T T T
T F T T T T T
T F F T T F T
F T T T T T T
F T F T T T T
F F T F T T T
F F F F F F F
b) p q r (p & q) ((p & q) & r) (q & r) (p & (q & r))
T T T T T T T
T T F T F F F
T F T F F F F
T F F F F F F
F T T F F T F
F T F F F F F
F F T F F F F
F F F F F F F
14. a) Jan is not rich or is not happy
b) Carlos will not run and will not bicycle tomorrow
c) Mei does not walk and does not take the bus to class
d) Ibrahim is not smart or is not hard-working
15. (p -> q) & (p -> r)
≣ (!p | q) & (!p | r) # Definition of ->
≣ (!p | (q & r)) # Distribution of | over &
≣ p -> (q & r) # Definition of ->

View File

@@ -0,0 +1,46 @@
1. a) the students who either live within 1 mile of the school or who walk to classes
b) the students who live within 1 mile of the school and walk to classes
c) the students who live within 1 mile of the school and do not walk to classes
d) the students who walk to classes and do not live within 1 mile of the school
2. a) { 0, 1, 2, 3, 4, 5, 6 }
b) { 3 }
c) { 1, 2, 4, 5 }
d) { 0, 6 }
3. a) { a, b, c, d, e, f, g, h }
b) { a, b, c, d, e }
c) {}
d) { f, g, h }
5. A \union B = { x | x in A || x in B }; commutative as OR is commutative
A \intersect B = { a | x in A && x in B }; commutative as AND is commutative
6. A - B = { x | x \in A \and x \nin B }
!B = { x | x \nin B }
A & !B = { x | x \in A \and x \in !B } = { x | x \in A \and x \nin B }
(A & B) | (A & !B) = (A | A) & (B | !B) (distribution of & over |)
= A & U
= A
7. a) { 4 6 }
b) { 0 1 2 3 4 5 6 7 8 9 10 }
c) { 4 5 6 8 10 }
d) { 0 2 4 5 6 7 8 9 10 }
9. { 2 5 }
11. A ^ B = { x | x in A ^ x in B } = { x | (x in A | x in B) & !(x in A & x in B) }
= { x | x in A | x in B } - { x | x in A & x in B }
= (A | B) - (A & B)
12. a) { a: 3, b: 3, c: 1, d: 4 }
b) { a: 2, b: 2 }
c) { a: 1, c: 1 }
d) { b: 1, d: 4 }
e) { a: 5, b: 5, c: 1, d: 4}
14. A_i = { x | x in Z, x <= i }
a) A_1
b) A_n

View File

@@ -0,0 +1,52 @@
1. a) f(x) is undefined for x = 0
b) f(x) is complex for x < 0
c) multivalued
2. a) multivalued
b) It is
c) undefined at x = 2
3. a) Z >= 0, {0..9}
b) 0.. -> 1..?
c) All bit strings -> N
d) All bit strings -> N
e) (Z^+)^2 -> Z^+
f) (Z^+)^2 -> Z^+
4. a) 1 b) 2 c) -1 d) 0 e) 2 f) 3 g) 0 h) 2
5. a) 1 b) 0 c) 0 d) -1 e) 3 f) -1 g) 2 h) 1
8. a) 6 b) 24 c) 120 d) 3_628_800
10. a)y b)n c)n
11. {a}
12. a) y b) n c) n d) n
13. a) y b) n) c) y) d) n
14. ynyy
15. a) everyone has a phone number (phone numbers should already be uniquie)
b) None (student ids should already be unique)
c) Every student gets a unique grade
d) no two people come from the same town
16. a) the set of phone numbers
b) the set of student ids
c) 1..100
d) all towns
17. ynnn
18. a) { 1 }
b) { -1, 1, 5, 9, 15 }
c) { 0, 1, 2 }
d) { 0, 1, 2 }
19. f.g = x^2 + 4x + 5, g.f = x^2 + 3
20. f + g = x^2 + x + 3
fg = x^3 + 2x^2 + x + 2
21. f^-1 doesn't exist, assuming f^-1(x) = +sqrt(x)
a) { 1 }
b) { x | 0 < x < 1 }
c) { x | x > 2 }

View File

@@ -0,0 +1,22 @@
def floor(n):
return n - (n % 1)
def ceil(n):
return n - (n % -1)
assert floor(-1) == -1
assert floor(1) == 1
assert floor(1.2) == 1
assert floor(-1.2) == -2
assert floor(0) == 0
assert floor(0.1) == 0
assert floor(-0.1) == -1
assert ceil(-1) == -1
assert ceil(1) == 1
assert ceil(1.2) == 2
assert ceil(-1.2) == -1
assert ceil(0) == 0
assert ceil(0.1) == 1
assert ceil(-0.1) == 0

View File

@@ -0,0 +1,35 @@
1. a) 3
b) -1
c) 787
d) 2639
2. a) 128
b) 7
c) 2
d) -256
3. a) 1, -2, 4, -8
b) 3, 3, 3, 3
c) 8, 13, 23, 71
d) 2, 0, 8, 0
4. a) 2, 5, 8, 11, 14, 17, 20, 23, 26, 29
b) 0, 0, 0, 1, 1, 1, 2, 2, 2, 3
c) 1, 1, 3, 3, 5, 5, 7, 7, 9, 9
d) 3, 6, 12, 24, 48, 96, 192, 384, 768, 1336
5. a_0 = 3, a_n = a_{n - 1} + 2 (i.e. the odd integers starting at 3)
the primes starting at three
- one more
6. a) 2, 12, 72, 432, 2592
b) 2, 4, 16, 256, 65536
c) 1, 2, 5, 11, 26
d) 1, 1, 6, 27, 204
7. a) a_n = -3a_{n-1} + 4a_{n-2} = -3(0) + 4(0) = 0 = a_n
b) a_n = -3(1) + 4(1) = 4 - 3 = 1 = a_n
c) a_n = -3((-4)^{n-1}) + 4((-4)^{n-2}) = -3(-4)(-4^{n-2}) + 4((-4)^{n-2}) = (-4)^{n-2}((-3)(-4) + 4) = (-4)^{n-1}(-3 - 1) = (-4)^n = a_n
d) a_n = -3(2*(-4)^{n-1} + 3) + 4(2 * (-4)^{n-2} + 3) = -6(-4)^{n-1} - 9 - 2(-4)^{n-1} + 12 = -8(-4)^{n-1} + 3 = 2(-4)^n + 3 = a_n
8.

5
CS1032/assesments Normal file
View File

@@ -0,0 +1,5 @@
Type of Assessment |ILOs (7)|% Weighting|Release Date|Due Time|Due Date |C6|Feedback Due |Feedback Provided
Online MCQ Test 1 (1hour/48hour)|1,2,3,5 |20 |09/10/2023 |23:59 |11/10/2023 | |25/10/2023 |
Programming Exercise |7 |30 |16/10/2023 |23:59 |06/11/2023 | |20/11/2023 |
Exam (2h, on campus, MCQ) |4,5,6 |50 | | |Assessment Weeks| |After Exam Mtg.|
|100 | | | | | | |

2
CS1032/notes-2023-09-21 Normal file
View File

@@ -0,0 +1,2 @@
Look into industry projects

1
CS1032/notes-2023-09-28 Normal file
View File

@@ -0,0 +1 @@

1
CS1032/notes-2023-10-05 Normal file
View File

@@ -0,0 +1 @@

1
CS1032/notes-2023-10-06 Normal file
View File

@@ -0,0 +1 @@

1
CS1032/notes-2023-10-12 Normal file
View File

@@ -0,0 +1 @@

1
CS1032/notes-2023-10-13 Normal file
View File

@@ -0,0 +1 @@

0
CS1032/notes-2023-10-26 Normal file
View File

1
CS1032/notes-2023-10-27 Normal file
View File

@@ -0,0 +1 @@

View File

@@ -0,0 +1,4 @@
(def names ["Monkey" "Rooster" "Dog" "Pig" "Rat" "Ox" "Tiger" "Hare" "Dragon" "Snake" "Horse" "Sheep"])
(defn main [_ arg] (print (names (% (scan-number arg) 12))))

View File

@@ -0,0 +1,15 @@
(def grades {
"A+" "4.0"
"A" "4.0"
"A-" "3.7"
"B+" "3.3"
"B" "3.0"
"B-" "2.7"
"C+" "2.3"
"C" "2.0"
"C-" "1.7"
"D+" "1.3"
"D" "1.0"
})
(defn main [_ arg] (print (or (grades arg) "Not a grade")))

View File

@@ -0,0 +1,8 @@
(def old (peg/compile ~(* (repeat 3 (range "AZ")) " " (repeat 3 (range "09")) -1)))
(def new (peg/compile ~(* (repeat 4 (range "09")) " " (repeat 3 (range "AZ")) -1)))
(defn main [_ arg] (print (cond
(peg/match old arg) "Old"
(peg/match new arg) "New"
true "Not a license plate"
)))

View File

@@ -0,0 +1,117 @@
(def grammar (peg/compile ~{
:main (* :tok (any (* :s+ :tok)) -1)
:tok (+ (<- :word) (number (some (+ (range "09") "."))))
:word (* :init-char (any :rest-char))
:init-char (+ (range "AZ") (range "az") (set ":/{}><,.[]+=-_*&^%$#@!;()"))
:rest-char (+ :init-char (range "09"))
}))
# State @{ :dictionary @{ word { :definition [word] :immediate } } :stack @[] :mode fn }
(defn immediate [state word]
(cond
(or (number? word) (array? word) (tuple? word)) (array/push (state :stack) word)
(let
(word (or ((state :dictionary) word) (error (string "No such word defined: " word))))
((word :definition) state)
)))
(defn deferred [state word] (let
(definition ((state :dictionary) word)) (if (and definition (definition :immediate))
(immediate state word)
(array/push (array/peek (state :stack)) word)
)))
(defmacro fixed-word [args ret] ~{
:definition (fn [state]
(do
,;(map (fn [name] ~(def ,name (,array/pop (state :stack)))) (reverse args))
(array/concat (state :stack) ,ret)
)
)
})
(defn run-state [state words]
(loop [word :in words] (:mode state word))
)
(defn word-as [& words] { :definition (fn [state] (run-state state words)) })
(defn truthy [a] (and a (not (= a 0))))
(def std-dict @{
"pick" (fixed-word [a b] [a b a])
"drop" (fixed-word [a] [])
"swap" (fixed-word [a b] [b a])
"dup" (fixed-word [a] [a a])
"-" (fixed-word [a b] (- a b))
"+" (fixed-word [a b] (+ a b))
"*" (fixed-word [a b] (* a b))
"/" (fixed-word [a b] (/ a b))
"=" (fixed-word [a b] (= a b))
">" (fixed-word [a b] (> a b))
"<" (fixed-word [a b] (< a b))
"len" (fixed-word [a] (length a))
"true" (fixed-word [] true)
"false" (fixed-word [] false)
"dec" (word-as 1 "-")
"inc" (word-as 1 "+")
"negate" (word-as 0 "swap" "-")
"." (fixed-word [a] (do (print a) []))
".s" { :definition (fn [state] (pp (state :stack)))}
"{" { :definition (fn [state]
(array/push (state :stack) @[])
(set (state :mode) deferred)
)}
"}" { :definition (fn [state]
(def words (array/peek (state :stack)))
(if (> (count |(= $ "{") words) (count |(= $ "}") words))
(array/push words "}")
(do
(def dictionary (table/clone (state :dictionary)))
(array/pop (state :stack)) # Remove wordlist that's on stack top
(array/push (state :stack) (fn [state &opt recur]
(when recur (set (dictionary "recur") { :definition recur }))
(def state @{ :dictionary dictionary :stack (state :stack) :mode immediate })
(run-state state words)
))
(set (state :mode) immediate)
)
)
) :immediate true }
"()" { :definition (fn [state] ((array/pop (state :stack)) state)) }
":" { :definition (fn [state]
(set (state :mode) (fn [state word]
(def exec (array/pop (state :stack)))
(set ((state :dictionary) word) { :definition (fn [state] (exec state exec)) })
(set (state :mode) immediate)
))
)}
"if" (fixed-word [cond when-true when-false] (do ((if (truthy cond) when-true when-false) state) []))
"loop" { :definition (fn [state]
(def body (array/pop (state :stack)))
(body state)
(while (truthy (array/pop (state :stack))) (body state))
)}
"while" { :definition (fn [state]
(def body (array/pop (state :stack)))
(while (truthy (array/pop (state :stack))) (body state))
)}
"repeat" (fixed-word [count body] (for x 0 count (body state)))
"[" { :immediate true :definition (fn [state]
(set (state :mode) immediate)
)}
"]" { :definition (fn [state]
(def val (array/pop (state :stack)))
(array/push (array/peek (state :stack)) val)
(set (state :mode) deferred)
)}
})
(defn main [_ arg] (let (
words (peg/match grammar arg)
state @{ :dictionary (table/clone std-dict) :stack @[] :mode immediate }
)
(run-state state words)
))

View File

@@ -0,0 +1,37 @@
based on user input, mapping "a" to "you chose the first option", "b" to "you chose the second option",
"c" to "you chose the third option", otherwise "invalid choice"
# getting user input
option = input ("Please enter a value for choice: ")
#verifying equality to "a"
if option == "a":
# printing message
print (“you choose the first option”)
# equality to b
elif option == "b":
# printing message
print (“you choose the second option”)
# equality to c
elif option == "c":
# printing message
print (“you choose the third option”)
#otherwise
else:
# printing message
print("Invalid choice.")
Task 2
x is undefined - prepend "x = int(input())\n"
# if x is non-negative
# if x less than 10
# print message
Task 3
x is undefined - prepend "x = int(input())\n"
# if x is positive
# increase x, inform user
# otherwise
# decrease x, inform user
# print message

View File

@@ -0,0 +1,14 @@
from typing import Iterable
def split(delim: str, s: str) -> Iterable[str]:
while len(s):
idx = s.find(delim)
if idx == -1: idx = len(s)
yield s[:idx]
s = s[idx + len(delim):]
for x in split(", ", "Aberdeen, Dundee, Edinburgh, Glasgow"): print(x)
# Swap M and D names in the definitions
d, m, y = tuple(split("/", "11/9/2001"))
print(f"Day = {d}, Month = {m}, Year = {y}")

View File

@@ -0,0 +1,7 @@
def trapezium_area(w1, w2, h):
return h * (w1 + w2) / 2
w1 = int(input("Width of the top: "))
w2 = int(input("Width of the bottom: "))
h = int(input("Height: "))
print(f"Area is {trapezium_area(w1, w2, h)}")

View File

@@ -0,0 +1,20 @@
def bmi(weight, height):
return weight * height ** -2
def bmi_category(bmi):
if bmi < 18.5:
return "underweight"
elif bmi < 25:
return "healthy"
elif bmi < 30:
return "overweight"
elif bmi < 40:
return "obese"
else:
return "severely obese"
weight = float(input("Weight? "))
height = float(input("Height? "))
bmi = bmi(weight, height)
print(f"BMI is {bmi:.3}")
print(f"The BMI is in the {bmi_category(bmi)} category")

View File

@@ -0,0 +1,7 @@
def exp(n, p):
if p == 0: return 1
return n * exp(n, p - 1)
base = float(input("Base? "))
power = int(input("Exponent? "))
print(exp(base, power))

View File

@@ -0,0 +1,9 @@
import random
randnumber = random.randint(1, 50)
while True:
mynumber = int(input("Please enter a value: "))
if randnumber == mynumber:
print("[perfect guess, you won....")
break

View File

@@ -0,0 +1,2 @@
for i in range(10, 0, -1):
print(i)

View File

@@ -0,0 +1,4 @@
# If the example output is intended
terms = int(input("Enter the Total Number of Terms:\n"))
for i in range(16):
print(f"2 raised to the power {i} is {2 ** i}")

View File

@@ -0,0 +1,13 @@
counts = { 'chuck': 1, 'annie': 42, 'jan': 100 }
for key in counts:
if (count := counts[key]) > 1:
print(key, count)
lst = list(counts.keys())
print(lst)
lst.sort()
for key in lst:
print(key, counts[key])

170
MA1006/complex.tex Normal file
View File

@@ -0,0 +1,170 @@
\input{decls.tex}
\title{Complex Numbers}
\begin{document}
\maketitle
\section*{Operations}
\begin{align*}
\forall z \in \C & \\
& \mod{z} = \sqrt{\Re{z}^2 + \Im{z}^2} \tag{modulus} \\
& \conj{z} = \Re{z} - i\Im{z} \tag{conjugate}
\end{align*}
\section*{Identities}
\begin{align*}
\forall z, w \in \C&: \\
& z\conj{z} \equiv \mod{z}^2 \\
& \conj{\conj{z}} \equiv z \\
& |\conj{z}| \equiv \mod{z} \\
& z + \conj{z} \equiv 2\Re{z} \\
& z - \conj{z} \equiv {-2\Im{z}} \\
& \Re{z} \leq \mod{z} & \Re{z} \leq \abs{\Re{z}} = \sqrt{\Re{z}^2} \leq \sqrt{\Re{z}^2 + \Im{z}^2} = \mod{z} \\
& \Im{z} \leq \mod{z} & \Im{z} \leq \abs{\Im{z}} = \sqrt{\Im{z}^2} \leq \sqrt{\Im{z}^2 + \Re{z}^2} = \mod{z} \\
& \conj{zw} \equiv \conj{z}\cdot\conj{w} \\
& \conj{z + w} \equiv \conj{z} + \conj{w} \\
& \conj{\paren{\frac{z}{w}}} \equiv \frac{\conj{z}}{\conj{w}} \text { where } w \neq 0 \\
& \mod{zw} \equiv \mod{z}\mod{w} \\
& \mod{\frac{z}{w}} \equiv \frac{\mod{z}}{\mod{w}} \text{ where } w \neq 0 \\
\end{align*}
\section*{Triangle Inequality}
\begin{align*}
\forall z, w \in \C. & \mod{z + w} \leq \mod{z} + \mod{w} \text {, as} \\
& \mod{z + w}^2 \\
& = \paren{z + w}\conj{\paren{z + w}} \\
& = z\conj{z} + w\conj{w} + z\conj{w} + w\conj{z} \\
& = \mod{z}^2 + \mod{w}^2 + z\conj{w} + \conj{z\conj{w}} \\
& = \mod{z}^2 + \mod{w}^2 + 2\Re{z\conj{w}} \\
& \leq \mod{z}^2 + \mod{w}^2 + 2\mod{z\conj{w}} \\
& = \mod{z}^2 + \mod{w}^2 + 2\mod{z}\mod{w} \\
& = \paren{\mod{z} + \mod{w}}^2 \\
& \\
& \mod{z + w}^2 \geq \paren{\mod{z} + \mod{w}}^2 \\
& \mod{z + w} \geq \mod{z} + \mod{w} &\text{as moduli are non-negative}
\end{align*}
\section*{Division}
\begin{align*}
\forall z, w \in \C &, w \neq 0. \\
& \frac{z}{w} = \frac{z}{w}\frac{\conj{w}}{\conj{w}}
= \frac{z\conj{w}}{\mod{w}^2}
\end{align*}
\section*{Square Root}
\begin{align*}
\forall z \in \C &. \\
& \sqrt{z} = \sqrt{\frac{\mod{z} + \Re{z}}{2}} + i\frac{\abs{b}}{b}\sqrt{\frac{\mod{z} - \Re{z}}{2}} \\
& \equiv \sqrt{\mod{z}}\paren{\cos{\frac{\arg{z}}{2}} + i\sin{\frac{\arg{z}}{2}}}
\end{align*}
\section*{Polar Form}
\begin{align*}
\forall z \in \C &. \\
& \arg{z} = \arctan{\frac{\Im{z}}{\Re{z}}} \paren{+\pi \text{ if } \Re{z} < 0} \\
& \Re{z} = \mod{z}\cos{\arg{z}}
& \Im{z} = \mod{z}\sin{\arg{z}}
\end{align*}
\section*{Locii}
\begin{description}
\item[Locus] A graph of an inequality on complex numbers, generally of their modulus
\item[Annulus] A locus of the form $a \leq \mod{z - b} \leq c$ for constants $a$, $b$, and $c$
\item[Principal Argument] The argument of a complex number in $[0, 2\pi)$
\end{description}
\subsection*{Hyperbolae}
\[ \frac{x^2}{r^2} - \frac{y^2}{R^2} = c\quad \text{ for constant $r$, $R$, $c$ } \]
\section*{De Moivre's Theorem}
\begin{align*}
\forall z, w \in \C. & \arg{zw} = \arg{z} + \arg{w} \\
\text{Proof:} \\
& \text{Let } \alpha = \arg{z} \text{ and } \beta = \arg{w} \\
& zw = \polar{\mod{z}}{\alpha}\polar{\mod{w}}{\beta} \\
& = \mod{z}\mod{w}\paren{\cos{\alpha}\cos{\beta} - \sin{\alpha}\sin{\beta} + i\paren{\cos{\alpha}\sin{\beta} + \sin{\alpha}\cos{\beta}}} \\
& = \polar{\mod{zw}}{\alpha + \beta} & \text{Trigonometric identites - addition of angles} \\
\end{align*}
Multiplication can then use $\mod{zw}$ and $\arg{zw}$, and exponentiation by induction ($z^{\paren{n - 1}} z$), and for negative exponents $\paren{z^{-1}}^{\abs{n}}$
\subsection*{Example}
\begin{align*}
& \frac{2i^3}{\paren{1+\sqrt{3}i}^4} \\
& = \frac{\paren{2^3\cdot i^3}}{\polar{\mod{1+\sqrt{3}i}^4}{4\cdot\arg{1+\sqrt{3}i}}} \\
& = \frac{-8i}{\polar{\sqrt{10}^4}{4\cdot\arctan{\frac{\sqrt{3}}{1}}}} \\
& = \frac{-8i}{\polar{100}{4\cdot\arctan{\sqrt{3}}}} \\
& = \frac{-8i}{\polar{100}{\frac{4\pi}{3}}} \\
& = \paren{-8i}\cdot\paren{\polar{100}{\frac{4\pi}{3}}}^{-1} \\
& = \paren{-8i}\cdot\paren{\polar{100^{-1}}{\frac{-4\pi}{3}}} \\
& = \polar{8}{\frac{\pi}{2}}\cdot\polar{\frac{1}{100}}{\frac{-4\pi}{3}} \\
& = \polar{\frac{8}{100}}{\frac{\pi}{2} + \frac{-4\pi}{3}} \\
& = \polar{\frac{8}{100}}{\frac{3\pi}{6}+\frac{-8\pi}{6}} \\
& = \polar{\frac{8}{100}}{\frac{-5\pi}{6}} \\
& = \frac{8}{100}\cdot\paren{\frac{-\sqrt{3}}{2} - \frac{1}{2}i} \\
& = \frac{-\sqrt{3}}{25} + \frac{1}{25}i \\
\end{align*}
\subsection*{$n^\text{th}$ Roots}
\begin{align*}
i & = \polar{1}{\frac{\pi}{2} + 2k\pi} \\
& \sqrt[3]{i} = \polar{\sqrt[3]{1}}{\frac{\pi}{2}\cdot\frac{1}{3} + 2k\pi\cdot\frac{1}{3}} \text{ - cyclic at $k\,$mod$\,3$}
\end{align*}
\\ \\
\[\forall z \in \C, n \in \N.\quad \exists~ n \text{ distinct $n^\text{th}$ roots of $z$, which are } \]
\[ \paren{\sqrt[n]{z}}_{k+1} = \polar{\sqrt[n]{\mod{z}}}{\frac{\arg{z} + 2k\pi}{n}} \forall k \in \N, [0, n) \]
Roots of unity are the $n^\text{th}$ complex roots of 1\\
\begin{align*}
\sqrt[n]{1} & = \polar{1}{\frac{2k\pi}{n}} \forall k \in 0..n \\
& = 1, ..
\end{align*}
Distributed around the unit circle evenly spaced
\subsection*{Use in Trigonometry}
To find $\cos{n\theta}$ or $\sin{n\theta}$ in terms of $\cos{\theta}$ and $\sin{\theta}$
\begin{align*}
\paren{\cos{\theta} + i\sin{\theta}}^n & = \cos{n\theta} + i\sin{n\theta} \\
& \Re{\paren{\cos{\theta} + i\sin{\theta}}^n} = \cos{n\theta} \\
& \Im{\paren{\cos{\theta} + i\sin{\theta}}^n} = \sin{n\theta} \\
\end{align*}
Binomial Expansion by Pascal's Triangle - sum of powers of the term are the number in pascal's triangle \\
1, sum of two above
\section*{Power Series}
\begin{align*}
\forall x \in \R .& ~ e^x = \sum_{n=0}^{\infty}\frac{x^n}{n!} \\
& \cos{x} = \sum_{n=0}^\infty\paren{\paren{-1}^n\cdot\frac{x^{2n}}{\paren{2n}!}}
& \sin{x} = \sum_{n=0}^\infty\paren{\paren{-1}^n\cdot\frac{x^{2n+1}}{\paren{2n+1}!}}
\end{align*}
Define these for $x \in \C$ in the same way
\begin{align*}
\forall b \in \R . & ~ e^{bi} = 1 + bi + \frac{(bi)^2}{2!} + \frac{(bi)^3}{3!} + ...\\
& = \paren{1 - \frac{b^2}{2!} + \frac{b^4}{4!}} + i\paren{b - \frac{b^3}{3!} + \frac{b^5}{5!}} \\
& = \cos{b} + i\sin{b} \\
\therefore \\
& e^{a + bi} = e^a\cdot e^{bi} = \polar{e^a}{b}
\end{align*}
\subsection*{Consequences}
$$ e^{i\pi} = -1 $$
De Moivre's Theorem: $$ e^{i\alpha}e^{i\beta} = e^{i\paren{\alpha+\beta}} $$
\subsection*{$\sin$, $\cos$ of Complex Numbers}
\begin{align*}
\forall \theta \in \R. \quad & e^{i\theta} + e^{-i\theta} = \cos{\theta} + i\sin{\theta} + \cos{-\theta} + i\sin{-\theta} \\
& = \cos{\theta} + i\sin{\theta} + \cos{\theta} - i\sin{\theta} \\
& = 2\cos{\theta} \\
\therefore \\
& \cos{\theta} = \frac{e^{i\theta} + e^{-i\theta}}{2} \quad \forall \theta \in \R
\end{align*}
Similarly, \[ \sin{\theta} = \frac{e^{i\theta} - e^{-i\theta}}{2i}\quad\forall\theta\in\R \] \\
Define $\cos{\theta}$ as \[ \frac{e^{i\theta} + e^{-i\theta}}{2}$ $~\forall \theta \in \C \]
Define $\sin{\theta}$ as \[ \frac{e^{i\theta} - e^{-i\theta}}{2i}$ $~\forall \theta \in \C \]
\subsubsection*{Examples}
\begin{align*}
\cos{\paren{1 + i}} = \frac{e^{i\paren{1 + i}} + e^{-i\paren{1 + i}}}{2} = \frac{e^{i - 1} + e^{1 - i}}{2}
= \frac{1}{2}\paren{\polar{e^{-1}}{1} + \polar{e}{-1}}
\end{align*}
\subsection*{Logarithms of Complex Numbers}
$$ \forall y \in \R, y > 0. \quad e^{\ln{y}} = y $$
\begin{align*}
\forall z \in \C. \quad & e^{\ln{z}} = z \\
& \text{let } w = \ln{z} = c + di \\
& e^w = e^{c + di} = \polar{e^c}{d} = z \\
& \implies e^c = \mod{z}, d = \arg{z} \\
& \implies w = c + di = \ln{\mod{z}} + i\arg{z}
\end{align*}
Note: $\arg{z}$ is multivalued, therefore $\ln{z}$ is multivalued
$$ \ln{z} = \ln{\mod{z}} + i\arg{z} $$
Sidenote: $\forall a \in \R, a < 0. \quad \ln{a} = \ln{\abs{a}} + i\pi\paren{2n + 1} \forall n \in \N$
$$ \forall z, w \in \C. \quad z^w = e^{w\ln{z}} $$
Exponents of complex numbers are \emph{odd}. $\quad z^{w_1\cdot w_2} \leq \paren{z^{w_1}}^{w_2}$ - They aren't necessarily equal
\end{document}

58
MA1006/decls.tex Normal file
View File

@@ -0,0 +1,58 @@
\documentclass[fleqn]{article}
\usepackage{amsmath,amssymb}
\usepackage[margin=0.25in]{geometry}
\usepackage{enumitem}
\usepackage{systeme}
\usepackage{mathtools}
\date{}
\author{}
\renewcommand{\Re}[1]{\operatorname{\mathbb{R}e}(#1)}
\renewcommand{\Im}[1]{\operatorname{\mathbb{{I}}m}(#1)}
\newcommand{\C}{\mathbb{C}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\conj}[1]{\overline{#1}}
\renewcommand{\mod}[1]{\left|#1\right|}
\newcommand{\abs}[1]{\left|#1\right|}
\newcommand{\paren}[1]{\left(#1\right)}
\newcommand{\polar}[2]{#1\paren{\cos{\paren{#2}} + i\sin{\paren{#2}}}}
\makeatletter
\renewcommand*\env@matrix[1][*\c@MaxMatrixCols c]{%
\hskip -\arraycolsep
\let\@ifnextchar\new@ifnextchar
\array{#1}}
\makeatother
% https://gitlab.com/jim.hefferon/linear-algebra/-/blob/master/src/sty/linalgjh.sty
\newlength{\grsteplength}
\setlength{\grsteplength}{1.5ex plus .1ex minus .1ex}
\newcommand{\grstep}[2][\relax]{%
\ensuremath{\mathrel{
\hspace{\grsteplength}\mathop{\longrightarrow}\limits^{#2\mathstrut}_{
\begin{subarray}{l} #1 \end{subarray}}\hspace{\grsteplength}}}}
\newcommand{\repeatedgrstep}[2][\relax]{\hspace{-\grsteplength}\grstep[#1]{#2}}
\newcommand{\swap}{\leftrightarrow}
% https://tex.stackexchange.com/a/198806
\makeatletter
\newcommand{\subalign}[1]{%
\vcenter{%
\Let@ \restore@math@cr \default@tag
\baselineskip\fontdimen10 \scriptfont\tw@
\advance\baselineskip\fontdimen12 \scriptfont\tw@
\lineskip\thr@@\fontdimen8 \scriptfont\thr@@
\lineskiplimit\lineskip
\ialign{\hfil$\m@th\scriptstyle##$&$\m@th\scriptstyle{}##$\hfil\crcr
#1\crcr
}%
}%
}
\makeatother

243
MA1006/linear.tex Normal file
View File

@@ -0,0 +1,243 @@
\input{decls.tex}
\title{Linear Algebra}
\begin{document}
\maketitle
\section*{Allowable Operations on a Linear System}
Solutions invariant.
\begin{itemize}
\item Multiply an equation by a non-zero scalar
\item Swap two equations
\item Add a multiple of one equation to another
\end{itemize}
\subsection*{Example}
\begin{align*}
&\systeme{
x - 2y + 2z = 6,
-x + 3y + 4z = 2,
2x + y - 2z = -2
}\\\\
E_2 & \implies E_2 + E_1 \\
E_3 & \implies E_3 + E_1 \\
&\systeme{
x - 2y + 2z = 6,
y + 6z = 8,
5y - 6z = -14
}\\\\
E_3 & \implies E_3 - 5E_2 \\
&\systeme{
x - 2y + 2z = 6,
y + 6z = 8,
z = \frac{3}{2}
}\\\\
E_1 & \implies E_1 - 2E_3 \\
E_2 & \implies E_2 - 6E_3 \\
&\systeme{
x - 2y = 3,
y = -1,
z = \frac{3}{2}
}\\\\
E_1 & \implies E_1 + 2E_2 \\
&\systeme{
x = 1,
y = -1,
z = \frac{3}{2}
}\\\\
\end{align*}
\section*{As Matrices}
\begin{align*}
\systeme{
x + 2y = 1,
2x - y = 3
}
\quad=\quad
\begin{pmatrix}[cc|c]
1 & 2 & 1 \\
2 & -1 & 3
\end{pmatrix}
& \systeme{
x - y + z = -2,
2x + 3y + z = 7,
x - 2y - z = -2
} \quad=\quad \begin{pmatrix}[ccc|c]
1 & -1 & 1 & -2 \\
2 & 3 & 1 & 7 \\
1 & -2 & -1 & -2
\end{pmatrix} \\
\grstep[R_3 - R_1]{R_2 - 2R_1} & \begin{pmatrix}[ccc|c]
1 & -1 & 1 & -2 \\
0 & 5 & -1 & 11 \\
0 & -1 & -2 & 0
\end{pmatrix} \\
\grstep{5R_3 + R_2} & \begin{pmatrix}[ccc|c]
1 & -1 & 1 & -2 \\
0 & 5 & -1 & 11 \\
0 & 0 & -11 & 11 \\
\end{pmatrix} \\
\grstep{-11^{-1}R_3} & \begin{pmatrix}[ccc|c]
1 & -1 & 1 & -2 \\
0 & 5 & -1 & 11 \\
0 & 0 & 1 & -1
\end{pmatrix} \\
\grstep[R_1 - R_3]{R_2 + R_3} & \begin{pmatrix}[ccc|c]
1 & -1 & 0 & -1 \\
0 & 5 & 0 & 10 \\
0 & 0 & 1 & -1
\end{pmatrix} \\&
\grstep{5^{-1}R_2} & \begin{pmatrix}[ccc|c]
1 & -1 & 0 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -1 \\
\end{pmatrix} \\
\grstep{R_1 + R_2} & \begin{pmatrix}[ccc|c]
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -1
\end{pmatrix} \\
= & \quad
\left\{
\subalign{
x & ~= ~1 \\
y & ~= ~2 \\
z & ~= ~-1
}
\right.
\end{align*}
\section*{Row-Echelon Form}
\begin{description}
\item[Row-Echelon Form] The leading entry in each row is 1 and is further to the right than the previous row's leading entry,
all 0 rows are at the end
\item[Reduced Row-Echelon Form] every other entry in a column containing a leading 1 is 0
\item[Theorem:] A matrix can be transformed to reduced row-echelon form using a finite number of allowable row operations
\end{description}
\subsection*{Example}
\begin{align*}
& \systeme{3x_1 + 2x_2 = 1,
x_1 - x_2 = 4,
2x_1 + x_2 = 5} = \begin{pmatrix}[cc|c]
3 & 2 & 1 \\
1 & -1 & 4 \\
2 & 1 & 5
\end{pmatrix} \\
\grstep{R_1\swap R_2} & \begin{pmatrix}[cc|c]
1 & -1 & 4 \\
3 & 2 & 1 \\
2 & 1 & 5
\end{pmatrix} \\
\grstep[R_2 - 3R_1]{R_3 - 2R_1} & \begin{pmatrix}[cc|c]
1 & -1 & 4 \\
0 & 5 & -11 \\
0 & 3 & -3
\end{pmatrix} \\
\grstep{5^{-1}R_2} & \begin{pmatrix}[cc|c]
1 & -1 & 4 \\
0 & 1 & \frac{-11}{5} \\
0 & 3 & -3
\end{pmatrix} \\
\grstep{R_3 - 2R_2} & \begin{pmatrix}[cc|c]
1 & -1 & 4 \\
0 & 1 & \frac{-11}{5} \\
0 & 0 & \frac{18}{5}
\end{pmatrix} \\
= & \systeme{
x_1 - x_2 = 4,
x_2 = \frac{-11}{5},
0x_1 + 0x_2 = \frac{18}{5}
}
\end{align*}
\begin{align*}
& \begin{pmatrix}[cccc|c]
1 & -1 & 1 & 1 & 6 \\
-1 & 1 & -2 & 1 & 3 \\
2 & 0 & 1 & 4 & 1 \\
\end{pmatrix} \\
\grstep[R_2 + R_1]{R_3 - 2R_1} & \begin{pmatrix}[cccc|c]
1 & -1 & 1 & 1 & 6 \\
0 & 0 & -1 & 2 & 9 \\
0 & 2 & -1 & 2 & -11
\end{pmatrix} \\
\grstep[R_2\swap R_3]{2^{-1}R_3} & \begin{pmatrix}[cccc|c]
1 & -1 & 1 & 1 & 6 \\
0 & 1 & \frac{1}{2} & 1 & \frac{-11}{2} \\
0 & 0 & -1 & 2 & 9 \\
\end{pmatrix} \\
\grstep[R_1 + R_3]{R_2 - 2^{-1}R_3} & \begin{pmatrix}[cccc|c]
1 & -1 & 0 & 3 & 15 \\
0 & 1 & 0 & 0 & -10 \\
0 & 0 & -1 & 2 & 9 \\
\end{pmatrix} \\
\grstep[-R_3]{R_1 + R_2} & \begin{pmatrix}[cccc|c]
1 & 0 & 0 & 3 & 15 \\
0 & 1 & 0 & 0 & -10 \\
0 & 0 & 1 & -2 & -9 \\
\end{pmatrix} \\
= & \systeme{
x_1 + 3x_4 = 5,
x_2 = -10,
x_3 - 2x_4 = -9
} \\
= & \left\{\substack{
x_1 = 5 - 3t \\
x_2 = -10 \\
x_3 = -9 + 2t
}\right.
\end{align*}
\section*{Determinants}
The determinant of a matrix is defined only for square matrices.
\[\det{A} \neq 0 \iff \exists \text{ a unique solution to the linear system represented by } A\]
Let
\[A = \begin{pmatrix}
a_{11} & a_{12} & a_{1n} \\
a_{21} & \ddots & \vdots \\
a_{31} & \ldots & a_{3n} \\
\end{pmatrix}
\]
\begin{description}
\item[$i, j$ minor of $A$] an $n$x$n$ matrix constructed by removing the $i^\text{th}$ row and $j^\text{th}$ column of $A$ \\
Denoted by $A_{ij}$
\end{description}
\begin{align*}
& \det{A} \text{ where } n = 1. = a_{11} \\
& \det{A} = a_{11}\det{A_{11}} - a_{12}\det{A_{12}} + ... + (-1)^{n+1}a_{1n} \tag{Laplace expansion of the first row} \\
& \qquad \text{or laplace expansion along other row or column}
\text{For } n = 2:& \\
& \det{A} = a_{11}\cdot a_{22} - a_{12}\cdot a_{21}
\end{align*}
\begin{description}
\item[Upper Triangular] lower left triangle is 0 - $d_{ij} = 0 \quad \forall{i > j}$
\item[Lower Triangular] upper right triangle is 0 - $d_{ij} = 0 \quad \forall{i < j}$
\item[Diagonal] only values on the diagonal - $d_{ij} = 0 \quad \forall{i \neq j}$ \\
$\det{A} = \prod^{N}_{i=0}~a_{ij} \forall~\text{ row-echelon }A$
\end{description}
\begin{itemize}
\item Multiplying a row of a square matrix $A$ by $r$ multiplies $\det{A}$ by $r$
\item Swapping two rows of a square matrix $A$ multiplies $\det{A}$ by $-1$
\item Adding a multiple of a row does not effect the determinant
\end{itemize}
\section*{Transposition}
\begin{description}
\item[$A^T$] $a^T_{ij} = a_{ji}~ \forall~i,j$
\end{description}
Note: $\det{A} = \det{A^T}~\forall~A$
\section*{Matrix Multiplication}
LHS has columns $=$ rows of RHS
It's the cartesian product
\[A\times B = (a_{i1}b_{j1} + a_{i2}b_{2j} + \ldots + a_{im}b_{mj})_{ij}\]
\begin{align*}
\begin{pmatrix}[c|c|c]
2 & 1 + 1 & 3 + 6 \\
4(2) & 4 + 1 & 3(4) + 6 \\
0 & 2 & 2(6) \\
\end{pmatrix} = \begin{pmatrix}
2 & 2 & 9 \\
8 & 5 & 18 \\
0 & 2 & 12
\end{pmatrix}
\end{align*}
\begin{align*}
\begin{pmatrix}1 \\ 2 \\ 3 \end{pmatrix}\begin{pmatrix}1 & 2 & 3 & 4\end{pmatrix} + \begin{pmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
\end{pmatrix}
\end{align*}
\end{document}

9
MA1006/notes-2023-09-21 Normal file
View File

@@ -0,0 +1,9 @@
Leading coefficient of a polynomial is the coefficient of the highest power of x.
Leading coefficient is inherently non-zero
Monic polynomials: leading coefficient == 1
Rational Root Theorem:
forall P(x): polynomial of degree n with integer coefficients
forall p, q: Z such that p/q is a root of P(x)
p is a factor of a[0]
q is a factor of a[n]

34
MA1006/polynomials.tex Normal file
View File

@@ -0,0 +1,34 @@
\input{decls.tex}
\title{Polynomials}
\begin{document}
\maketitle
\begin{itemize}[leftmargin=10em]
\item[Polynomial in $\C$] \quad $\forall n \in \N, a_{i \in [0, n]} \in \C, a_n \neq 0. \quad P(x) = \sum_{i=0}^{n} a_{i}x^i$
\item[Degree] \quad $n$
\item[Leading Coefficient] \quad $a_n$
\item[Monic Polynomial] \quad Polynomial with $a_n = 1$
\end{itemize}
The Abel-Ruffini theorem states that there exists a degree-5 polynomial with roots that cannot be expressed with $+ - * / \surd$
\section*{Rational Root Theorem}
\[
\forall \text{ polynomials } P(x) \text { with } \forall i. a_i \in \Z.\quad \forall \frac{p}{q} \in \Q.~P\paren{\frac{p}{q}} = 0 \implies p|a_0 \land q|a_n \\ % x|y x divides y
\]
This means that monic polynomials have no rational non-integral roots.
\section*{Polynomial Division}
\[\forall P(x), D(x).~ \exists Q(x), R(x).~ P(x) = D(x)Q(x) + R(x), \operatorname{degree}(R) < \operatorname{degree}(D)\]
\section*{Remainder Theorem}
\[\forall P(x), c. P(c) = 0 \iff \paren{x - c}|P(x)\]
Proof:
\begin{align*}
\text{Given that }& P(c) = 0: \\
& \exists Q(x), R(x).~P(x) = Q(x)(x - c) + R(x) & \text{Division of polynomials} \\
& P(c) = Q(c)(c - c) + R(c) & \\
& 0 = Q(c)(0) + R(c) & \\
& R(c) = 0 & \\
& \forall x.~R(x) = 0 & \text{As $D(x)$ has degree $1$, $R(x)$ must have degree $0$} \\
& \therefore~(x - c)|P(x) \\
\text{Given that }& (x - c)|P(x) \\
& \exists Q(x).~P(x) = Q(x)(x - c) & \text{Division of polynomials, remainder $0$} \\
& \therefore~P(c) = Q(c)(c - c) = 0\cdot Q(c) = 0
\end{align*}
\end{document}

6
MA1006/tmpl.tex Normal file
View File

@@ -0,0 +1,6 @@
\input{decls.tex}
\title{}
\begin{document}
\maketitle
\end{document}

42
MA1006/tut-2023-10-10.tex Normal file
View File

@@ -0,0 +1,42 @@
\input{decls.tex}
\title{Tutorial 2023-10-10}
\begin{document}
\maketitle
\section{}
\section{}
They're rotated by 90 degrees
\section{}
\begin{tabular}{ c c c c }
$\theta$ & $\cos\theta$ & $\sin\theta$ & $\tan\theta$ \\ \hline
$0$ & $ 1 $ & $ 0 $ & $ 0 $ \\ \hline
$\pi/6$ & $\sqrt{3}/2$ & $1/2$ & $\sqrt{3}/3$ \\ \hline
$\pi/4$ & $\sqrt{2}/2$ & $\sqrt{2}/2$ & $1$ \\ \hline
$\pi/3$ & $1/2$ & $\sqrt{3}/2$ & $\sqrt{3}$ \\ \hline
$\pi/2$ & $0$ & $1$ & undefined \\ \hline
$-\pi/6$ & $\sqrt{3}/2$ & $-1/2$ & $-\sqrt{3}/3$ \\ \hline
$-\pi/4$ & $\sqrt{2}/2$ & $-\sqrt{2}/2$ & -1 \\ \hline
$-\pi/3$ & $1/2$ & $-\sqrt{3}/2$ & $-\sqrt{3}$ \\ \hline
$-\pi/2$ & $0$ & $-1$ & undefined \\ \hline
\end{tabular}
\section{}
\subsection{}
\begin{align*}
& +1 = \polar{1}{0} & {-1} = \polar{1}{\pi} \\
& +i = \polar{1}{\frac{\pi}{2}} & {-i} = \polar{1}{-\frac{\pi}{2}}
\end{align*}
\subsection{}
\[1 - i = \polar{\sqrt{2}}{\frac{-\pi}{4}}\]
\[1 + i = \polar{\sqrt{2}}{\frac{\pi}{4}} \]
\subsection{}
\[-1 + i\sqrt{3} = \polar{2}{\frac{-\pi}{3}}\]
\[-1 - i\sqrt{3} = \polar{2}{\frac{+\pi}{3}}\]
\subsection{}
\[\]
\section{}
\subsection{}
\[i\]
\subsection{}
\[\sqrt{2} + \sqrt{2}i\]
\subsection{}
\end{document}

View File

@@ -0,0 +1,9 @@
\input{decls.tex}
\title{Tutorial}
\date{2023-10-17}
\begin{document}
\maketitle
\section{}
\subsection{}
\begin{align*}
\end{document}