Compare commits

...

2 Commits

Author SHA1 Message Date
bluepython508
f2244a076a Add theorem commands 2024-09-25 10:20:49 +01:00
bluepython508
a50fc0e90f . 2024-05-01 17:43:02 +01:00
5 changed files with 112 additions and 2 deletions

View File

@@ -254,11 +254,11 @@ $+$ and $\times$ on $\Z/k$:
\section*{Countable Sets}
A set $X$ is finite if $\exists n \geq 0. $ a bijection $\{1, ...n\} \to X$ \\
Pigeonhole Principle: for finite $X$, any injective $f: X \to X$ is also surjective. \\
$\N$ is infinite. Proof: $f: \N \to \N$ is trivially injective, and $\neg\exists x.~f(x) = 0$, and so not surjective. \\
$\N$ is infinite. Proof: $f: \N \to \N $ defined by $ f(x) = x + 1$ is trivially injective, and $\neg\exists x.~f(x) = 0$, and so not surjective. \\
By the inverse of the Pigeonhole Principle, $\N$ is infinite.\\
A set $X$ is \emph{countably infinite} iff there exists a bijection $\N \to X$. \\
A set is \emph{countable} iff it is finite or countably infinite. \\
Any subset of $\N$ is countable. Proof: Let $X \in \N$.\\
Any subset of $\N$ is countable. Proof: Let $X \subseteq \N$.\\
If $X$ is finite, it's trivially countable.
Otherwise, $X$ is infinite and it must be shown that $X$ is countably infinite. \\
For $k \in \N$, $X_{>k} = \{ n \in X | n > k \}$. Then $X_{>k} \not= \varnothing$, as $X$ would be a subset of $\{1..k\}$ and would be finite. \\

1
MA2008/2024-09-24 Normal file
View File

@@ -0,0 +1 @@

76
MA2008/decls.tex Normal file
View File

@@ -0,0 +1,76 @@
\documentclass[fleqn]{article}
\usepackage{amsmath,amssymb,amsthm}
\usepackage[margin=0.25in]{geometry}
\usepackage{enumitem}
\usepackage{systeme}
\usepackage{mathtools}
\date{}
\author{}
\newcommand{\paren}[1]{\left(#1\right)}
\newcommand{\powerset}[1]{\mathcal{P}\paren{#1}}
\renewcommand{\Re}[1]{\operatorname{\mathbb{R}e}\paren{#1}}
\renewcommand{\Im}[1]{\operatorname{\mathbb{{I}}m}\paren{#1}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\conj}[1]{\overline{#1}}
\renewcommand{\mod}[1]{\left|#1\right|}
\newcommand{\abs}[1]{\left|#1\right|}
\newcommand{\polar}[2]{#1\paren{\cos{\paren{#2}} + i\sin{\paren{#2}}}}
\newcommand{\adj}[1]{\operatorname{adj}#1}
\newcommand{\card}[1]{\left|#1\right|}
\newcommand{\littletaller}{\mathchoice{\vphantom{\big|}}{}{}{}}
\newcommand{\restr}[2]{{% we make the whole thing an ordinary symbol
\left.\kern-\nulldelimiterspace % automatically resize the bar with \right
#1 % the function
\littletaller % pretend it's a little taller at normal size
\right|_{#2} % this is the delimiter
}}
\makeatletter
\renewcommand*{\env@matrix}[1][*\c@MaxMatrixCols c]{%
\hskip -\arraycolsep
\let\@ifnextchar\new@ifnextchar
\array{#1}}
\makeatother
% https://gitlab.com/jim.hefferon/linear-algebra/-/blob/master/src/sty/linalgjh.sty
\newlength{\grsteplength}
\setlength{\grsteplength}{1.5ex plus .1ex minus .1ex}
\newcommand{\grstep}[2][\relax]{%
\ensuremath{\mathrel{
\hspace{\grsteplength}\mathop{\longrightarrow}\limits^{#2\mathstrut}_{
\begin{subarray}{l} #1 \end{subarray}}\hspace{\grsteplength}}}}
\newcommand{\repeatedgrstep}[2][\relax]{\hspace{-\grsteplength}\grstep[#1]{#2}}
\newcommand{\swap}{\leftrightarrow}
% https://tex.stackexchange.com/a/198806
\makeatletter
\newcommand{\subalign}[1]{%
\vcenter{%
\Let@ \restore@math@cr \default@tag
\baselineskip\fontdimen10 \scriptfont\tw@
\advance\baselineskip\fontdimen12 \scriptfont\tw@
\lineskip\thr@@\fontdimen8 \scriptfont\thr@@
\lineskiplimit\lineskip
\ialign{\hfil$\m@th\scriptstyle##$&$\m@th\scriptstyle{}##$\hfil\crcr
#1\crcr
}%
}%
}
\makeatother
\theoremstyle{definition}
\newtheorem*{theorem}{Theorem}
\newtheorem*{lemma}{Lemma}
\newtheorem*{corollary}{Corollary}
\theoremstyle{remark}
\newtheorem*{note}{Note}

View File

@@ -0,0 +1,27 @@
\input{decls.tex}
\title{Vector Spaces and Linear Transformations}
\begin{document}
\maketitle
\begin{description}
\item[Linear Transformation] A function $\phi: V \to W$ between vector spaces $V$ and $W$ (over some field $K$), such that
\begin{align*}
\phi(v + w) & \equiv \phi(v) + \phi(w) \\
\phi(x \cdot v) & \equiv x \cdot \phi(v) \tag{For $x \in K$}
\end{align*}
\end{description}
Differentiation is a linear transformation.
Solutions to $f'' + f = 0$ for function $f$ are a vector space.
\begin{theorem}
For any scalars $\lambda, \mu \in \R$, there is a unique solution such that $f(0) = \mu$ and $f'(0) = \lambda$
\end{theorem}
The vector space is then two-dimensional, with basis $sin(x), cos(x)$
\subsection*{}
Vector spaces are used over finite fields in \emph{Algebraic Coding Theory}. The field is $\mathbb{F}_2 = \{0, 1\}$ - the integers mod 2.
Binary strings of length $n$ are then a vector space over $\mathbb{F}_2^n$.
ECC can be based on vector subspaces of $F_2^n$. (Vector subspaces are closed subsets of a vector space).
\end{document}

6
MA2008/tmpl.tex Normal file
View File

@@ -0,0 +1,6 @@
\input{decls.tex}
\title{}
\begin{document}
\maketitle
\end{document}