Compare commits
7 Commits
846f4e00b7
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f2244a076a | ||
|
|
a50fc0e90f | ||
|
|
5bbbb4f1da | ||
|
|
b7b584a989 | ||
|
|
b50b42c01b | ||
|
|
201182156f | ||
|
|
bd228e9dca |
1
.gitignore
vendored
1
.gitignore
vendored
@@ -1,3 +1,4 @@
|
||||
*.pdf
|
||||
latex.out/
|
||||
.direnv
|
||||
__pycache__/
|
||||
|
||||
Binary file not shown.
2
CS1527/assessment-2/.envrc
Normal file
2
CS1527/assessment-2/.envrc
Normal file
@@ -0,0 +1,2 @@
|
||||
export NIX_PATH="nixpkgs=flake:nixpkgs"
|
||||
use nix
|
||||
404
CS1527/assessment-2/assessment2.py
Normal file
404
CS1527/assessment-2/assessment2.py
Normal file
@@ -0,0 +1,404 @@
|
||||
#!/usr/bin/env python
|
||||
"""Usage: `python assessment2.py {subcommand} {expressions}`
|
||||
|
||||
If expressions are not provided, they are taken from each line of stdin.
|
||||
Documentation of subcommands is available from `python assessment2.py -h`.
|
||||
|
||||
Examples for marking criteria:
|
||||
1. Eval: `python assessment2.py eval "(((2*(3+2))+5)/2)"`
|
||||
2. Tree: `python assessment2.py render-tree "(((2*(3+2))+5)/2)"`
|
||||
3. Preorder: `python assessment2.py format-prefix "(((2*(3+2))+5)/2)"`
|
||||
In-order: `python assessment2.py format-infix "(((2*(3+2))+5)/2)"`
|
||||
Postorder: `python assessment2.py format-postfix "(((2*(3+2))+5)/2)"`
|
||||
4. Errors: `python assessment2.py eval "(4*3*2)" "(4*(2))" "(4*(3+2)*(2+1))" "(2*4)*(3+2)" "((2+3)*(4*5)" "((2+3)*(4*5)" "(2+5)*(4/(2+2)))" "(2+5)*(4/(2+2)))" "(((2+3)*(4*5))+(1(2+3)))"`
|
||||
5. Tests: `python assessment2.py test`
|
||||
|
||||
Tests can be run with `pytest assessment2.py` or `python assessment2.py test`.
|
||||
|
||||
All of the formatting is implemented with post-order traversals. This is
|
||||
necessary to output parenthesis in the pre- and in-order cases. It could also be
|
||||
done with a buffer and a combined traversal (with callbacks before, between, and
|
||||
after subtree visits), but that requires mutation.
|
||||
|
||||
Note: this program requires Python 3.12 due to the generic syntax used to define
|
||||
`BTree.traverse`. Pytest is also required. These should be installed already
|
||||
on Codio.
|
||||
"""
|
||||
# stdlib
|
||||
from dataclasses import dataclass
|
||||
from typing import Literal, Tuple, Callable, cast, override
|
||||
from operator import add, sub, mul, truediv as div
|
||||
from argparse import ArgumentParser
|
||||
import sys
|
||||
import re
|
||||
from textwrap import dedent
|
||||
|
||||
# pytest, from https://pypi.org/project/pytest/
|
||||
# authors can be found at https://github.com/pytest-dev/pytest/graphs/contributors,
|
||||
import pytest
|
||||
|
||||
OPERATORS: dict[Literal["+", "-", "*", "/"], Callable[[float, float], float]] = {
|
||||
"+": add,
|
||||
"-": sub,
|
||||
"*": mul,
|
||||
"/": div,
|
||||
}
|
||||
|
||||
|
||||
class BTree:
|
||||
value: float
|
||||
|
||||
def traverse[T](
|
||||
self,
|
||||
value: Callable[["Value", int], T],
|
||||
operator: Callable[["Operator", T, T, int], T],
|
||||
depth: int = 0,
|
||||
) -> T:
|
||||
"""Traverse the binary tree with a post-order traversal
|
||||
|
||||
`value` takes the value node and its depth from the root node
|
||||
`operator` takes the operator node, the results of traversing the left
|
||||
and right subtrees, and the depth of the node
|
||||
|
||||
The tree could, for example, be evaluated with `traverse`:
|
||||
```
|
||||
(...).traverse(
|
||||
lambda node, _: node.value,
|
||||
lambda node, left, right, _: OPERATORS[node.operator](left, right)
|
||||
)
|
||||
```
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def as_preorder_str(self) -> str:
|
||||
"""Format the tree in prefix notation"""
|
||||
return self.traverse(
|
||||
lambda value, _: str(value.value),
|
||||
lambda op, left, right, _: f"({op.operator} {left} {right})",
|
||||
)
|
||||
|
||||
def as_inorder_str(self) -> str:
|
||||
"""Format the tree as a typical parenthesized expression"""
|
||||
return self.traverse(
|
||||
lambda value, _: str(value.value),
|
||||
lambda op, left, right, _: f"({left} {op.operator} {right})",
|
||||
)
|
||||
|
||||
__str__ = as_inorder_str
|
||||
|
||||
def as_inorder_lines(self) -> str:
|
||||
"""Format the tree, visually as a tree"""
|
||||
return self.traverse(
|
||||
lambda value, depth: " " * depth + str(value.value),
|
||||
lambda op, left, right, depth: f"{left}\n{' ' * depth}{op.operator}\n{right}",
|
||||
)
|
||||
|
||||
def as_postorder_str(self) -> str:
|
||||
"""Format the tree in postfix notation (RPN)"""
|
||||
return self.traverse(
|
||||
lambda value, _: str(value.value),
|
||||
lambda op, left, right, _: f"{left} {right} {op.operator}",
|
||||
)
|
||||
|
||||
|
||||
@dataclass(frozen=True, slots=True)
|
||||
class Value(BTree):
|
||||
value: float
|
||||
|
||||
@override
|
||||
def traverse[T](
|
||||
self,
|
||||
value: Callable[["Value", int], T],
|
||||
operator: Callable[["Operator", T, T, int], T],
|
||||
depth: int = 0,
|
||||
) -> T:
|
||||
"""Traverse the binary tree with a post-order traversal
|
||||
|
||||
`value` takes the value node and its depth from the root node
|
||||
`operator` takes the operator node, the results of traversing the left
|
||||
and right subtrees, and the depth of the node
|
||||
|
||||
The tree could, for example, be evaluated with `traverse`:
|
||||
```
|
||||
(...).traverse(
|
||||
lambda node, _: node.value,
|
||||
lambda node, left, right, _: OPERATORS[node.operator](left, right)
|
||||
)
|
||||
```
|
||||
"""
|
||||
|
||||
return value(self, depth)
|
||||
|
||||
|
||||
@dataclass(frozen=True, slots=True)
|
||||
class Operator(BTree):
|
||||
operator: Literal["+", "-", "*", "/"]
|
||||
left: BTree
|
||||
right: BTree
|
||||
|
||||
@property
|
||||
def value(self) -> float: # type: ignore - the field should be read-only
|
||||
return OPERATORS[self.operator](self.left.value, self.right.value)
|
||||
|
||||
@override
|
||||
def traverse[T](
|
||||
self,
|
||||
value: Callable[["Value", int], T],
|
||||
operator: Callable[["Operator", T, T, int], T],
|
||||
depth: int = 0,
|
||||
) -> T:
|
||||
"""Traverse the binary tree with a post-order traversal
|
||||
|
||||
`value` takes the value node and its depth from the root node
|
||||
`operator` takes the operator node, the results of traversing the left
|
||||
and right subtrees, and the depth of the node
|
||||
|
||||
The tree could, for example, be evaluated with `traverse`:
|
||||
```
|
||||
(...).traverse(
|
||||
lambda node, _: node.value,
|
||||
lambda node, left, right, _: OPERATORS[node.operator](left, right)
|
||||
)
|
||||
```
|
||||
"""
|
||||
|
||||
return operator(
|
||||
self,
|
||||
self.left.traverse(value, operator, depth + 1),
|
||||
self.right.traverse(value, operator, depth + 1),
|
||||
depth,
|
||||
)
|
||||
|
||||
|
||||
def parse(expr: str) -> BTree:
|
||||
"""Parse a parenthesized expression as in the spec.
|
||||
|
||||
Requires a single parenthesized string, potentially with whitespace
|
||||
Raises ValueError on parse errors
|
||||
"""
|
||||
|
||||
def number(expr: str) -> Tuple[BTree, str] | None:
|
||||
if not expr[0].isdigit():
|
||||
return None
|
||||
rest = expr.lstrip("0123456789")
|
||||
return Value(int(expr[: len(expr) - len(rest)])), rest.lstrip()
|
||||
|
||||
def parenthesized(expr: str) -> Tuple[BTree, str] | None:
|
||||
if not expr.startswith("("):
|
||||
return None
|
||||
expr = expr[1:].lstrip()
|
||||
|
||||
left, expr = operand(expr)
|
||||
|
||||
operator, expr = expr[0], expr[1:]
|
||||
if operator not in OPERATORS:
|
||||
raise ValueError(f"Unknown operator {operator}")
|
||||
operator = cast(Literal["+", "-", "*", "/"], operator)
|
||||
|
||||
right, expr = operand(expr.lstrip())
|
||||
|
||||
if not expr.startswith(")"):
|
||||
if expr and expr[0] in OPERATORS:
|
||||
raise ValueError("Too many operands in expression")
|
||||
raise ValueError("Expected closing parenthesis")
|
||||
return Operator(operator, left, right), expr[1:].lstrip()
|
||||
|
||||
def operand(expr: str) -> Tuple[BTree, str]:
|
||||
v = number(expr) or parenthesized(expr)
|
||||
if not v:
|
||||
raise ValueError(
|
||||
"Expected a number or the beginning of a parenthesized expression"
|
||||
)
|
||||
return v
|
||||
|
||||
result = parenthesized(expr.lstrip())
|
||||
if not result or result[1]:
|
||||
# If rest is non-empty, then something was after the parenthesis starting the expression
|
||||
# i.e. the full expression was not parenthesized.
|
||||
raise ValueError("Expected parenthesized expression at the top level")
|
||||
|
||||
return result[0]
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("expr", "ast"),
|
||||
[
|
||||
("(1 + 1)", Operator("+", Value(1), Value(1))),
|
||||
(
|
||||
"(2*(3+ 2))",
|
||||
Operator("*", Value(2), Operator("+", Value(3), Value(2))),
|
||||
),
|
||||
(" (1 +1) ", Operator("+", Value(1), Value(1))),
|
||||
],
|
||||
)
|
||||
def test_parse(expr: str, ast: BTree):
|
||||
"""Test parsing of expressions"""
|
||||
assert parse(expr) == ast
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("expr", "value"),
|
||||
[
|
||||
("(1 + 2)", 3),
|
||||
("(12 + (((4 / 2) * 3) + (3 * 2)))", 24),
|
||||
("(((2 * (3 + 2)) + 5) / 2)", 7.5),
|
||||
],
|
||||
)
|
||||
def test_eval(expr: str, value: float):
|
||||
"""Test evaluation"""
|
||||
assert parse(expr).value == value
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("expr", "tree"),
|
||||
[
|
||||
(
|
||||
"(1 + 2)",
|
||||
"""
|
||||
1
|
||||
+
|
||||
2
|
||||
""",
|
||||
),
|
||||
(
|
||||
"(1 + (((4 / 2) * 3) + (3 * 2)))",
|
||||
"""
|
||||
1
|
||||
+
|
||||
4
|
||||
/
|
||||
2
|
||||
*
|
||||
3
|
||||
+
|
||||
3
|
||||
*
|
||||
2
|
||||
""",
|
||||
),
|
||||
(
|
||||
"(((2*(3+2))+5)/2)",
|
||||
"""
|
||||
2
|
||||
*
|
||||
3
|
||||
+
|
||||
2
|
||||
+
|
||||
5
|
||||
/
|
||||
2
|
||||
"""
|
||||
)
|
||||
],
|
||||
)
|
||||
def test_inorder_lines(expr: str, tree: str):
|
||||
"""Test tree rendering"""
|
||||
assert parse(expr).as_inorder_lines() == dedent(tree).strip("\n")
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("expr", "prefix"),
|
||||
[
|
||||
("(1 + 2)", "(+ 1 2)"),
|
||||
("(1 + (((4 / 2) * 3) + (3 * 2)))", "(+ 1 (+ (* (/ 4 2) 3) (* 3 2)))"),
|
||||
],
|
||||
)
|
||||
def test_prefix(expr: str, prefix: str):
|
||||
"""Test prefix formatting"""
|
||||
assert parse(expr).as_preorder_str() == prefix
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("expr"),
|
||||
[
|
||||
"(1 + 2)",
|
||||
"(1 + (((4 / 2) * 3) + (3 * 2)))",
|
||||
"(((3 + 2) * 2) + (((7 / 3) * 5) - 3))",
|
||||
],
|
||||
)
|
||||
def test_infix_roundtrip(expr: str):
|
||||
"""Test infix formatting roundtrips"""
|
||||
assert str(parse(expr)) == expr
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("expr", "postfix"),
|
||||
[
|
||||
("(1 + 2)", "1 2 +"),
|
||||
("(1 + (((4 / 2) * 3) + (3 * 2)))", "1 4 2 / 3 * 3 2 * + +"),
|
||||
],
|
||||
)
|
||||
def test_postfix(expr: str, postfix: str):
|
||||
"""Test postfix formatting"""
|
||||
assert parse(expr).as_postorder_str() == postfix
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("expr", "err"),
|
||||
[
|
||||
("(4 * 3 * 2)", "Too many operands in expression"),
|
||||
("(4 * (2))", "Unknown operator )"),
|
||||
("(4 * (3 + 2) * (2 + 1))", "Too many operands in expression"),
|
||||
("(2 *4)*(3+2)", "Expected parenthesized expression at the top level"),
|
||||
("(2+5)*(4/(2+2))", "Expected parenthesized expression at the top level"),
|
||||
("(((2+3)*(4*5))+(1(2+3)))", "Unknown operator ("),
|
||||
],
|
||||
)
|
||||
def test_error(expr: str, err: str):
|
||||
"""Test error messages"""
|
||||
with pytest.raises(ValueError, match=re.escape(err)):
|
||||
parse(expr)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = ArgumentParser(usage=__doc__)
|
||||
subcommands = parser.add_subparsers(title="Subcommands", required=True)
|
||||
|
||||
def with_expressions(parser):
|
||||
parser.add_argument(
|
||||
"expressions",
|
||||
nargs="*",
|
||||
help="The expressions to operate on. If none are provided, operate on lines of stdin.",
|
||||
)
|
||||
return parser
|
||||
|
||||
with_expressions(
|
||||
subcommands.add_parser("eval", help="Evaluate the expression")
|
||||
).set_defaults(func=lambda expr: expr.value)
|
||||
with_expressions(
|
||||
subcommands.add_parser("render-tree", help="Render the expression as a tree")
|
||||
).set_defaults(func=BTree.as_inorder_lines)
|
||||
with_expressions(
|
||||
subcommands.add_parser(
|
||||
"format-prefix", help="Format the expression in prefix notation"
|
||||
)
|
||||
).set_defaults(func=BTree.as_preorder_str)
|
||||
with_expressions(
|
||||
subcommands.add_parser(
|
||||
"format-infix",
|
||||
help="Format the expression in typical parenthesized infix notation",
|
||||
)
|
||||
).set_defaults(func=BTree.as_inorder_str)
|
||||
with_expressions(
|
||||
subcommands.add_parser(
|
||||
"format-postfix",
|
||||
help="Format the expression in postfix notation, i.e. as RPN",
|
||||
)
|
||||
).set_defaults(func=BTree.as_postorder_str)
|
||||
subcommands.add_parser("test", help="Run tests").set_defaults(
|
||||
func=lambda: pytest.main([__file__])
|
||||
)
|
||||
args = parser.parse_args()
|
||||
if "expressions" in args:
|
||||
for expression in args.expressions or sys.stdin:
|
||||
if len(args.expressions) > 1:
|
||||
print(expression + ":")
|
||||
try:
|
||||
parsed = parse(expression)
|
||||
except ValueError as e:
|
||||
print(f"Error: {e}")
|
||||
continue
|
||||
print(args.func(parsed))
|
||||
else:
|
||||
args.func()
|
||||
3
CS1527/assessment-2/shell.nix
Normal file
3
CS1527/assessment-2/shell.nix
Normal file
@@ -0,0 +1,3 @@
|
||||
{ pkgs ? import <nixpkgs> {} }: pkgs.mkShell {
|
||||
packages = [(pkgs.python312.withPackages (p: with p; [ python-lsp-server pytest pytest-watch black ])) pkgs.nodePackages.pyright];
|
||||
}
|
||||
1
CS1527/notes-2024-02-27.md
Normal file
1
CS1527/notes-2024-02-27.md
Normal file
@@ -0,0 +1 @@
|
||||
|
||||
1
CS1534/notes-2024-02-15.md
Normal file
1
CS1534/notes-2024-02-15.md
Normal file
@@ -0,0 +1 @@
|
||||
|
||||
@@ -9,6 +9,7 @@
|
||||
\author{}
|
||||
|
||||
\newcommand{\paren}[1]{\left(#1\right)}
|
||||
\newcommand{\powerset}[1]{\mathcal{P}\paren{#1}}
|
||||
\renewcommand{\Re}[1]{\operatorname{\mathbb{R}e}\paren{#1}}
|
||||
\renewcommand{\Im}[1]{\operatorname{\mathbb{{I}}m}\paren{#1}}
|
||||
\newcommand{\C}{\mathbb{C}}
|
||||
@@ -22,9 +23,16 @@
|
||||
\newcommand{\polar}[2]{#1\paren{\cos{\paren{#2}} + i\sin{\paren{#2}}}}
|
||||
\newcommand{\adj}[1]{\operatorname{adj}#1}
|
||||
\newcommand{\card}[1]{\left|#1\right|}
|
||||
\newcommand{\littletaller}{\mathchoice{\vphantom{\big|}}{}{}{}}
|
||||
\newcommand{\restr}[2]{{% we make the whole thing an ordinary symbol
|
||||
\left.\kern-\nulldelimiterspace % automatically resize the bar with \right
|
||||
#1 % the function
|
||||
\littletaller % pretend it's a little taller at normal size
|
||||
\right|_{#2} % this is the delimiter
|
||||
}}
|
||||
|
||||
\makeatletter
|
||||
\renewcommand*\env@matrix[1][*\c@MaxMatrixCols c]{%
|
||||
\renewcommand*{\env@matrix}[1][*\c@MaxMatrixCols c]{%
|
||||
\hskip -\arraycolsep
|
||||
\let\@ifnextchar\new@ifnextchar
|
||||
\array{#1}}
|
||||
|
||||
@@ -9,6 +9,7 @@
|
||||
\author{}
|
||||
|
||||
\newcommand{\paren}[1]{\left(#1\right)}
|
||||
\newcommand{\powerset}[1]{\mathcal{P}\paren{#1}}
|
||||
\renewcommand{\Re}[1]{\operatorname{\mathbb{R}e}\paren{#1}}
|
||||
\renewcommand{\Im}[1]{\operatorname{\mathbb{{I}}m}\paren{#1}}
|
||||
\newcommand{\C}{\mathbb{C}}
|
||||
@@ -22,9 +23,16 @@
|
||||
\newcommand{\polar}[2]{#1\paren{\cos{\paren{#2}} + i\sin{\paren{#2}}}}
|
||||
\newcommand{\adj}[1]{\operatorname{adj}#1}
|
||||
\newcommand{\card}[1]{\left|#1\right|}
|
||||
\newcommand{\littletaller}{\mathchoice{\vphantom{\big|}}{}{}{}}
|
||||
\newcommand{\restr}[2]{{% we make the whole thing an ordinary symbol
|
||||
\left.\kern-\nulldelimiterspace % automatically resize the bar with \right
|
||||
#1 % the function
|
||||
\littletaller % pretend it's a little taller at normal size
|
||||
\right|_{#2} % this is the delimiter
|
||||
}}
|
||||
|
||||
\makeatletter
|
||||
\renewcommand*\env@matrix[1][*\c@MaxMatrixCols c]{%
|
||||
\renewcommand*{\env@matrix}[1][*\c@MaxMatrixCols c]{%
|
||||
\hskip -\arraycolsep
|
||||
\let\@ifnextchar\new@ifnextchar
|
||||
\array{#1}}
|
||||
|
||||
329
MA1511/sets.tex
329
MA1511/sets.tex
@@ -29,18 +29,18 @@ A family of sets indexed by a set $I$ (the indexing set): $A_i ~~\forall~i\in I
|
||||
$A_i$ is a set for every element $i \in I$ \\
|
||||
A family of sets indexed by $\N$ is called a sequence of sets. Also written $(B_i)^{\inf}_{i=0}$ or $(B_i)_{i \geq 0}$
|
||||
\begin{align*}
|
||||
\bigcup_{i \in I}~A_i \equiv \{x | \exists i \in I. x \in A_i \} \\
|
||||
\bigcap_{i \in I}~A_i \equiv \{x | \forall i \in I. x \in A_i \} & \text{ Exists iff } \exists~i\in I
|
||||
\bigcup_{i \in I}~A_i \equiv \{x | \exists i \in I. x \in A_i \} \\
|
||||
\bigcap_{i \in I}~A_i \equiv \{x | \forall i \in I. x \in A_i \} & \text{ Exists iff } \exists~i\in I
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
& \forall i \in I. A_i \subseteq \cup_{j \in I}A_j \\
|
||||
& \forall i \in I. A_i \subseteq B \implies \cup_{j \in I}A_j \subseteq B \\
|
||||
& \forall i \in I.\cap_{j \in I}A_j \subseteq A_i \\
|
||||
& \forall i \in I. B \subseteq A_i \implies B \subseteq \cap_{j \in I}A_j \\ \\
|
||||
& B \cup \cap_{i \in I}A_i = \cup_{i \in I}(B \cap A_i) \\
|
||||
& B \cap \cup_{i \in I}A_i = \cap_{i \in I}(B \cup A_i) \\
|
||||
& B \setminus \cup_{i \in I}A_i = \cap_{i\in I}(B\setminus A_i) \\
|
||||
& B \setminus \cap_{i \in I}A_i = \cup_{i\in I}(B \setminus A_i)
|
||||
& \forall i \in I. A_i \subseteq \cup_{j \in I}A_j \\
|
||||
& \forall i \in I. A_i \subseteq B \implies \cup_{j \in I}A_j \subseteq B \\
|
||||
& \forall i \in I.\cap_{j \in I}A_j \subseteq A_i \\
|
||||
& \forall i \in I. B \subseteq A_i \implies B \subseteq \cap_{j \in I}A_j \\ \\
|
||||
& B \cup \cap_{i \in I}A_i = \cup_{i \in I}(B \cap A_i) \\
|
||||
& B \cap \cup_{i \in I}A_i = \cap_{i \in I}(B \cup A_i) \\
|
||||
& B \setminus \cup_{i \in I}A_i = \cap_{i\in I}(B\setminus A_i) \\
|
||||
& B \setminus \cap_{i \in I}A_i = \cup_{i\in I}(B \setminus A_i)
|
||||
\end{align*}
|
||||
\section*{Cartesian Products}
|
||||
Ordered pairs can be represented as $(x, y) \equiv \{x, \{x, y\}\}$ \\
|
||||
@@ -51,9 +51,312 @@ $\card{X\times Y} = \card{X} \times \card{Y}$ (for finite $X$, $Y$)
|
||||
For sets $X$, $Y$:
|
||||
\begin{description}
|
||||
\item[A function $F: X \to Y$] $\subseteq X\times Y$ \text { where } \\
|
||||
$\forall x \in X.~\exists \text{ a unique } y \in Y.~ (x, y) \in F$ \\
|
||||
$F(x)$ denotes the unique element $y \in Y$ for which $(x, F(x)) \in F$
|
||||
$\forall x \in X.~\exists \text{ a unique } F(x) \in Y.~ (x, F(x)) \in F$ \\
|
||||
There exist $\card{Y}^{\card{X}}$ functions $F: X \to Y$
|
||||
\item[$\operatorname{dom}(F)$] The domain of $F$, i.e. $X$
|
||||
\item[$\operatorname{incl}^{X}_{A} : A \to X$] $= a \quad \forall A X. \text{ where } A \subseteq X$
|
||||
\item[$\operatorname{incl}^X_A : A \to X$] $= a \quad \forall A,X. \text{ where } A \subseteq X$
|
||||
\item[Constant function] $\exists y_0 \in Y.~\forall x \in X.~ f(x) = y_0$
|
||||
\item[Characteristic Function of a set $A \subseteq X$: $\chi_A: X \to \{0, 1\}$]
|
||||
\[
|
||||
\chi_A: X \to \{0, 1\} = \left\{\begin{array}{lr}
|
||||
0 & \text{ if } x \not\in A \\
|
||||
1 & \text{ if } x \in A
|
||||
\end{array} \right.
|
||||
\]
|
||||
\item[Restriction of a function $f: X \to Y$] $\restr{f}{A}$ is $f$ specialized contravariantly to $A \subseteq X$
|
||||
\item[$f(A)$: Image of $A$ under $f$] $f$ mapped over $A$ \quad for function $f: X \to Y$, $A \subseteq X$
|
||||
\item[$\operatorname{ran}(f)$ / image of $f$ / range of $f$] $\{ f(x) | x \in X \}$, $f(X)$, i.e. all possible values of $f(x)$
|
||||
\item[Preimage of $B$ under $f$] $\{ x \in X ~|~ f(x) \in B \}$ \\
|
||||
written $f^{-1}(B)$, but is \emph{not} the inverse of f
|
||||
\end{description}
|
||||
For $f: X \to Y$, $A \subseteq A' \subseteq X$, $B \subseteq B' \subseteq Y$:
|
||||
\begin{align*}
|
||||
f(A) \subseteq~ & f(A') \\
|
||||
f^{-1}(B) \subseteq ~ & f^{-1}(B') \\
|
||||
f^{-1}(f(A)) \supseteq ~ & A \\
|
||||
f(f^{-1}(B)) \subseteq ~ & B
|
||||
\end{align*}
|
||||
For set families $(A_i \subseteq X)_{i \in I}, (B_j \subseteq Y)_{j \in J}$:
|
||||
\begin{align*}
|
||||
f(\cup_{i \in I} A_i) = ~ & \cup_{i \in I}f(A_i) \\
|
||||
f(\cap_{i \in I} A_i) \subseteq ~ & \cap_{i \in I}f(A_i) \\
|
||||
f^{-1}(\cup_{j \in J} B_j) = ~ & \cup_{j \in J} f^{-1}(B_j) \\
|
||||
f^{-1}(\cap_{j \in J} B_j) = ~ & \cap_{j \in J} f^{-1}(B_j)
|
||||
\end{align*}
|
||||
\section*{Function Composition}
|
||||
For functions $f: X \to Y$, $g: Y \to Z$:
|
||||
\begin{align*}
|
||||
& (g \circ f): X \to Z \\
|
||||
& (g\circ f)(x) = g(f(x)) & \forall x \in X \\ \\
|
||||
\end{align*}
|
||||
\section*{Surjection and Injection}
|
||||
For $f: X \to Y$, $f$ is
|
||||
\begin{description}
|
||||
\item[surjective] iff $f(X) = Y$, i.e. $\forall y \in Y.~ \exists x \in X.~ f(x) = y$ \\
|
||||
Range is codomain, 'onto'
|
||||
\item[injective] iff $\forall x, x' \in X. ~ f(x) = f(x') \implies x = x'$
|
||||
\item[bijective] iff $f$ is injective and $f$ is surjective \\
|
||||
one-to-one
|
||||
\end{description}
|
||||
Given $f: X \to Y$, $g: Y \to Z$: \\
|
||||
\quad If f and g are injective, so is $g\circ f$ \\
|
||||
\quad If f and g are surjective, so is $g \circ f$ \\
|
||||
\quad If $g \circ f$ is injective, so is $f$ \\
|
||||
\quad If $g \circ f$ is surjective, so is $g$
|
||||
\section*{Inverse Functions}
|
||||
The inverse function $f^{-1}$ of $f: X \to Y$ exists iff $f$ is bijective, and is defined by \[f^{-1}(y) = x \text{ where } \exists! x \in X. f(x) = y \qquad \forall y \in Y\]
|
||||
\begin{align*}
|
||||
(f \circ f^{-1}) = \operatorname{Id} \\
|
||||
(f^{-1} \circ f) = \operatorname{Id}
|
||||
\end{align*}
|
||||
\section*{Power Sets}
|
||||
Powerset of S: $\powerset{S}$ has $2^{\card{S}}$ elements is the set of all subsets of $S$ \\
|
||||
$Fun(X, \{0, 1\})$ is the set of functions $X \to \{0, 1\}$ \\
|
||||
$\Phi: Fun(X, \{0, 1\}) \to \powerset{X}$ \\
|
||||
$\Phi(f) = \{ x \in X | f(x) = 1 \}$ \\
|
||||
$\Phi$ is bijective.
|
||||
\section*{Binary Operators}
|
||||
A binary operator is $X^2 \to X$ \\
|
||||
Union is $\powerset{X}^2 \to \powerset{X}$ \\
|
||||
$\square$ is the unknown or indeterminate binop sigil \\
|
||||
Unital: $\forall x \in X. \exists u \in X. u \square x = x \square u = x$
|
||||
\section*{Construction of the Natural Numbers}
|
||||
\begin{align*}
|
||||
x^{+} & = x \cup \{x\} & \text{successor of $x$}
|
||||
\end{align*}
|
||||
A set $X$ is \emph{inductive} if $\varnothing \in X \land (a \in X \implies a^+ \in X)$ \\
|
||||
Axiom: There exists an inductive set. \\
|
||||
Definition: A natural number is a set that is an element of all inductive sets. \\
|
||||
Theorem: There exists a set whose elements are the natural numbers. \\
|
||||
\begin{align*}
|
||||
& \text{Given an inductive set $A$} \\
|
||||
& \omega = \{ x \in A | x \text{ is a natural number}\} \\
|
||||
& \text{any natural number is in $A$ (since $A$ is inductive), and therefore in $\omega$} \\
|
||||
& \omega \text{ is the natural numbers}
|
||||
\end{align*}
|
||||
\\
|
||||
Define:
|
||||
\begin{align*}
|
||||
0 & = \varnothing \\
|
||||
1 & = 0^+ \\
|
||||
2 & = 1^+ \\
|
||||
\ldots
|
||||
\end{align*}
|
||||
$\in$ is an ordering over $\omega$, as is $\subseteq$ \\
|
||||
$\omega$ is an inductive set. Proof: \\
|
||||
$\varnothing$ is a natural number.
|
||||
$x \in \omega$ implies $x^+ \in \omega$, as $x$ is natural and is therefore in
|
||||
every inductive set, and so $x^+$ is in every inductive set and is therefore a
|
||||
natural number.
|
||||
\subsection*{Principle of Induction}
|
||||
If $A \subseteq \omega$ and $A$ is inductive, $A = \omega$.
|
||||
Since $A$ is inductive, it contains every natural number, so $\omega \subseteq A$. \\
|
||||
Since $A \subseteq \omega \land \omega \subseteq A$, $A = \omega$
|
||||
\section*{Recursion on $\omega$}
|
||||
\subsection*{Principle of Recursion}
|
||||
For a set $X$, $x_0 \in X$, $h: X \to X$, there exists a unique function $f: \omega \to X$ where $f(0) = x_0$, $f(n^+) = h(f(n))$.
|
||||
\section*{Relations}
|
||||
Total order: $(X, \prec)$, requires $\forall x, y, z \in X$: \\
|
||||
\begin{align*}
|
||||
& x \prec y \land y \prec z \implies x \prec z \\
|
||||
& x = y \oplus x \prec y \oplus y \prec x & \text{ (where $\oplus$ denotes XOR) }
|
||||
\end{align*}
|
||||
Lexicographic order $x <_L y$ on $\N\times\N = x_0 < y_0 \lor (x_0 = y_0 \land x_1 < y_1)$ \\
|
||||
For a non-empty subset $A$ of $X$ given a total order $(X, \prec)$, a minimum/least element $a_0 \in A$
|
||||
exists where $\forall a \in A.~a_0 \preceq a$.
|
||||
\section*{Ordering on $\omega$}
|
||||
$(\omega, \in)$ and $(\omega, \subset)$ are both total orderings on $\omega$, such that $\varnothing$ is the minimum and $\forall x \in \omega.~x < x^+$
|
||||
\section*{Strong Induction}
|
||||
Every non-empty subset of $\N$ has a minimum. \\ \\
|
||||
Let $\phi(x)$ be a predicate over $\N$ where $\forall n\in \N.~ (\forall m \in \N.~ m < n \implies \phi(m)) \implies \phi(n)$. \\
|
||||
Then $\phi(0)$ holds, as $\neg\exists n \in \N.~n<0$, $\phi(1)$ holds as $\phi(0)$ holds, etc.
|
||||
\begin{align*}
|
||||
& \neg\exists x \in \N.~\neg\phi(x) \\
|
||||
& \text{Let } A \text{ be a subset of }N\text{ such that }\phi(n)\text{ is false }\forall n \in A \\
|
||||
& \text{If not, $\exists a_0 \in A$} \\
|
||||
& \forall n \in N.~n < a_0 \implies n \not\in A \implies \phi(n) \\
|
||||
& \text{Then $\phi(n)$ holds $\forall n < a_0$, so $\phi(a_0)$, then $a_0 \not\in A$, which is a contradiction, so $A = \varnothing$}
|
||||
\end{align*}
|
||||
\section*{Fibonacci}
|
||||
Fibonacci Sequence: $F_n$ \\
|
||||
Roots of $x^2 - x - 1$ are $\phi = \frac{1 + \sqrt{5}}{2}$ and $\psi = \frac{1 - \sqrt{5}}{2}$ \\
|
||||
$F_n = \frac{\phi^{n+1} - \psi^{n+1}}{\sqrt{5}}$ \\
|
||||
For $n=0$:
|
||||
|
||||
$F_0 = 1 = \frac{\frac{1 + \sqrt{5}}{2} - \frac{1-\sqrt{5}}{2}} = \frac{2\sqrt{5}}{2} = 1$ \\
|
||||
|
||||
For $n=1$: \\
|
||||
|
||||
$F_1 = 1 = \frac{\paren{\frac{1 + \sqrt{5}}{2}}^2 - \paren{\frac{1 - \sqrt{5}}{2}}^2}{\sqrt{5}} = \frac{\phi + 1 - \psi - 1}{\sqrt{5}}$ \\
|
||||
|
||||
For $n\geq 2$:
|
||||
\begin{align*}
|
||||
& F_n = F_{n-1} + F_{n-2} = \frac{\phi^n - \psi^n}{\sqrt{5}} + \frac{\phi^{n-1} - \psi^{n-1}}{\sqrt{5}} \\
|
||||
& = \frac{\phi^{n-1}\paren{\phi + 1} - \psi^{n-1}\paren{\psi + 1}}{\sqrt{5}} \\
|
||||
& = \frac{\phi^{n-1}\phi^2 - \psi^{n-1}\psi^2}{\sqrt{5}} \\
|
||||
& = \frac{\phi^{n+1} - \psi^{n+1}}{\sqrt{5}} & \text{as required}
|
||||
\end{align*}
|
||||
|
||||
\subsection*{Zeckendorff's Theorem}
|
||||
Every natural number can be written as a sum of non-adjacent Fibonacci numbers in a unique way (excluding $F_0$). \\
|
||||
A finite subset $I$ of $\N^+$ is \emph{Zeckendorff} if it contains no adjacent elements ($\forall x \in I.~x^+ \not\in I$) \\
|
||||
Define $\mathcal{Z}$ as the set of all Zeckendorff sets, and $\sigma: \mathcal{Z} \to \N^+$ by $\sigma(I) = \sum_{i \in I}F_i$.
|
||||
The theorem claims $\sigma$ is bijective. \\ \\
|
||||
For nonempty $I \in \mathcal{Z}$ with largest element $k$:
|
||||
\begin{align*}
|
||||
& \text{Let } J = I \setminus \{k\} \\
|
||||
& \sigma(I) = F_k + \sigma(J) \geq F_k \\
|
||||
& \text{If } J = \varnothing\text{, } \sigma(I) = F_k \leq F_{k + 1} \\
|
||||
& \text{Otherwise, we must show } \sigma(I) < F_{k + 1} \\
|
||||
& \equiv F_k + \sigma(J) < F_{k + 1} \\
|
||||
& \equiv \sigma(J) < F_{k + 1} - F_k = F_{k-1} \\
|
||||
& \text{But if $k' = \operatorname{max}(J)$, } \\
|
||||
& \sigma(J) < F_{k' + 1} \land k' < k - 2 \text{ (since $I$ is \emph{Zeckendorff})} \\
|
||||
& \sigma(J) < F_{k - 1} \text{ as required.}
|
||||
\end{align*}
|
||||
|
||||
Proof of theorem: $\forall n \in N.~ \sigma$ is bijective.
|
||||
\begin{align*}
|
||||
n = 0: \quad & I = \varnothing \\
|
||||
n > 0: \quad & \text{Let } F_k \leq n < F_{k + 1},~ m = n - F_k \\
|
||||
& m = \sigma(J) \text{ for some } J \\
|
||||
& \text{If } J = \varnothing, I = \{k\}. \\
|
||||
& \text{Otherwise, } k' = \operatorname{max}(J). \\
|
||||
& \text{If } k' \leq k - 2, I = J \cup \{k\} \\
|
||||
\end{align*}
|
||||
\section*{Equivalence Relations}
|
||||
Reflexive, Symmetric, Transitive \\
|
||||
Equivalence relations are usually called $\sim$ \\
|
||||
In a set $X$,
|
||||
\[ [x] = \{ y \in X | x \sim y \} \]
|
||||
\[ [x] = [y] \equiv x \sim y \]
|
||||
Any two equivalence classes of $X$ are either disjoint or equal. \\
|
||||
\subsection*{Quotient Sets}
|
||||
$X/\sim~ = \{[x] | x \in X \} \subset \powerset{X}$ \\
|
||||
A complete set of representatives is a subset $A$ of $X$ where $\forall x \in X. \exists! a \in A. a \in [x].$ \\
|
||||
I.E. a complete set of representatives contains exactly one element from each element of $X/\sim$ \\
|
||||
$f: A \to X/\sim$ defined by $f(a) = [a]$
|
||||
\\\\\\
|
||||
A function $f: X \to Y$ is \emph{compatible} iff $x \sim y \implies f(x) = f(y)~\forall x, y \in X$ \\
|
||||
For a \emph{compatible} function, $\Bar{f}: X/\sim~\to Y$ exists and is defined by $\Bar{f}([x]) = f(x)$
|
||||
\subsection*{Integers modulo $k$}
|
||||
Fix some $k \in \N^+$ \\
|
||||
Define $\sim$ on $\Z$ by $n \sim m \iff n - m$ is a multiple of $k$ \\
|
||||
$\sim$ is an equivalence relation \\
|
||||
$[0, k)\cap\N$ is a complete set of representatives for $\sim$ \\
|
||||
$Z/k$ is the set of integers modulo $k$, $n \equiv m~(\operatorname{mod} k) \iff n \sim m$ \\
|
||||
\([m] = [m]_k\) \\
|
||||
$+$ and $\times$ on $\Z/k$:
|
||||
\begin{align*}
|
||||
[n] + [m] = [n + m] \\
|
||||
[n][m] = [nm]
|
||||
\end{align*}
|
||||
\section*{Countable Sets}
|
||||
A set $X$ is finite if $\exists n \geq 0. $ a bijection $\{1, ...n\} \to X$ \\
|
||||
Pigeonhole Principle: for finite $X$, any injective $f: X \to X$ is also surjective. \\
|
||||
$\N$ is infinite. Proof: $f: \N \to \N $ defined by $ f(x) = x + 1$ is trivially injective, and $\neg\exists x.~f(x) = 0$, and so not surjective. \\
|
||||
By the inverse of the Pigeonhole Principle, $\N$ is infinite.\\
|
||||
A set $X$ is \emph{countably infinite} iff there exists a bijection $\N \to X$. \\
|
||||
A set is \emph{countable} iff it is finite or countably infinite. \\
|
||||
Any subset of $\N$ is countable. Proof: Let $X \subseteq \N$.\\
|
||||
If $X$ is finite, it's trivially countable.
|
||||
Otherwise, $X$ is infinite and it must be shown that $X$ is countably infinite. \\
|
||||
For $k \in \N$, $X_{>k} = \{ n \in X | n > k \}$. Then $X_{>k} \not= \varnothing$, as $X$ would be a subset of $\{1..k\}$ and would be finite. \\
|
||||
Then $min(X_{>k})$ exists, and $h: X \to X$ can be defined by $h(x) = min(X_{>x})$, and $f: \N \to X$ by recursion on $h$ with $f(0) = min(X)$. \\
|
||||
\\
|
||||
If an injection $f: A \to X$ exists, $A$ is countable if $X$ is. Proof: \\
|
||||
If $A$ is finite, it's countable. Otherwise, \\
|
||||
Since $X$ is countable, there exists a bijection $g: X \to \N$, and $g \circ f: A \to \N$
|
||||
exists and is a composite of 2 injective functions, and therefore is itsself injective. \\
|
||||
\\
|
||||
Any subset of a countable set is countable, by above with the inclusion function.
|
||||
|
||||
$N^2$ is countable. Proof: \\
|
||||
Take $f: \N^2 \to \N$ defined by $f(a, b) = 2^a3^b$. \\
|
||||
$f$ is injective. Proof is simple -- prime factor decompositions are unique. \\
|
||||
|
||||
If a function $f: X \to Y$ exists where $X$ is countable, $f(X)$ is countable. Proof: \\
|
||||
For $y \in f(X)$, \emph{choose} an $x_y \in f^{-1}(\{y\})$ and define $g: f(X) \to X$ by $g(y) = x_y$. \\
|
||||
$g$ is injective, so $f(X)$ injects into the countable set $X$ and is itself countable. \\
|
||||
In particular, for any surjection $f: X \to Y$, $Y$ is countable if $X$ is \\
|
||||
\\
|
||||
The union over a countable set of countable sets is countable. Proof: For family $X_{i \in I}$, $X_i$ countable, $I$ countable \\
|
||||
There is an injection $h: I \to \N$, and $f_i: X_i \to \N \forall i \in I$, as these are countable sets. \\
|
||||
Define $Y = \bigcup_{i \in I}X_i$, and $g: Y \to \N$ by $g(y) = (h(i), f_i(y))$ where $i \in I$ is chosen so that $y \in X_i$.
|
||||
Then $g$ is injective because equality distributes over pairs, and $h$ and $f_i$ are injective.\\
|
||||
|
||||
If $X$ and $Y$ are countable, so is $X\times Y$. Proof: \\
|
||||
Define for $x \in X$ a subset $Y_x = \{(x, y) | y \in Y\}$ of $X \times Y$, then $\{Y_x\}_{x \in X}$ is a countable family of countable sets.
|
||||
\\
|
||||
$\Z$ is countable, as a union of $\N$ and $(\times {-1})(\N^+)$, or $\N \times \{0, 1\}$ \\
|
||||
|
||||
$\Q$ is countable. Proof:
|
||||
\begin{align*}
|
||||
& \text{Define } f: \Z\times (\Z \setminus \{ 0 \}) \text{ by } f(a, b) = \frac{a}{b} \\
|
||||
& f \text{ is surjective, by definition of } \Q. \\
|
||||
& \Z \text{ is countable, as above } \\
|
||||
& \Z \setminus \{ 0 \} \text{ is countable, as a subset of a countable set } \Z \\
|
||||
& \Z\times (\Z \setminus \{ 0 \}) \text{ is countable, as a product of countable sets } \\
|
||||
& \text{Since } f \text{ is surjective with a countable domain, } \Q \text{ is countable }
|
||||
\end{align*}
|
||||
|
||||
For set family $X_{n \in \N^+}$, $\times_{n \in \N^+} X_n$ is countable if $\forall n \in \N.~X_n$ is countable. Proof: \\
|
||||
Base Case: $n = 1$: $X_1$ is countable, since $X_1$ is countable. \\
|
||||
Induction: Assume $\times_{n \in \N^+, \leq k} X_n$ is countable. \\
|
||||
Then the result for $k + 1$ is $\times_{n \in \N^+, \leq k + 1} X_n$, which is $(\times_{n \in \N^+, \leq k} X_n) \times X_{k + 1}$, which is the product of countable sets and is therefore countable. \\
|
||||
By induction, the result holds for $n \in N^+$ \\
|
||||
This generalizes to all countable indexing sets $I$, by constructing an injection $f: I \to \N$.
|
||||
\\ \\
|
||||
Let $X$ be countable. Define $\mathbb{P}_{<\infty}\paren{X}$ as the set of all finite subsets of $X$. $\mathbb{P}_{<\infty}\paren{X}$ is countable. Proof: \\
|
||||
For $n \in \N$, let $\mathbb{P}_{\leq n}(X)$ denote the set of all nonempty subsets of $X$ with $n$ elements or less. \\
|
||||
The function $p_n: X^n \to \mathbb{P}_{\leq n}(X)$ defined by $p_n(x_1, x_2, ... x_n) = \{ x_1, x_2, ... x_n\}$ is surjective. \\
|
||||
Then, since $X$ is countable, so is $\mathbb{P}_{\leq n}(X)$ (as $X^n$ is countable and there exists a surjection $X^n \to \mathbb{P}_{\leq n}(X)$) \\
|
||||
\[\mathbb{P}_{\leq\infty}(X) = \bigcup_{n \in \N^+}\mathbb{P}_{\leq n}(X) \cup \{\varnothing\} \]
|
||||
This is a countably-sized union of countable sets and so is itself countable, as required.
|
||||
|
||||
\subsection*{Cantor's Theorem}
|
||||
Let $X$ be a set. Then there exists no surjective function $f: X \to \powerset{X}$. Proof: \\
|
||||
Let $f: X \to \powerset{X}$ be a function. We will prove that $f$ is not surjective. \\
|
||||
Define $D \subseteq X$ by $\{ x \in X | x \not\in f(x) \}$ \\
|
||||
Then $D \in \powerset{X}$, and we will show that there is no element of $X$ for which $f(x) = D$. \\
|
||||
Suppose there was such an $x$. Either: \\
|
||||
|
||||
$x \in D$. Then $x \in f(x)$, but by definition of $D$, $x \not\in f(x)$, which is a contradiction.
|
||||
|
||||
$x \not\in D$. Then $x \not\in f(x)$, so $x \in D$ by definition of $D$, which is a contradiction. \\\\
|
||||
Since both cases give a contradiction, there exists no such $x$, and $f$ is not surjective. \\
|
||||
This is the less famous diagonal argument. \\
|
||||
\\
|
||||
$\R$ is uncountable. Proof:
|
||||
|
||||
Define $f: \powerset{\N} \to \R$ by $f(A) = \sum_{n \in A} 2(3^{-n}) \quad \forall A \subseteq \N$.
|
||||
Then $f$ is injective: \\
|
||||
|
||||
Take $\alpha, \beta \in \powerset{\N}$, where $\alpha \not = \beta$, and we will show $f(\alpha) \not = f(\beta)$. \\
|
||||
Then, take $k \in \N$ as the smallest natural number in exactly one of $\alpha$, $\beta$, and assume it's in $\beta$ WLOG. \\
|
||||
Then
|
||||
\begin{align*}
|
||||
f(\alpha) & = \sum_{n \in \alpha}\frac{2}{3^n} \\
|
||||
& = \sum_{n \in \alpha, < k} \frac{2}{3^n} + \sum_{n \in \alpha, > k} \frac{2}{3^n} \\
|
||||
& \leq \sum_{n \in \alpha, < k} \frac{2}{3^n} + \sum_{n > k} \frac{2}{3^n} \\
|
||||
& = \sum_{n \in \alpha, < k} \frac{2}{3^n} + \frac{1}{3^k} \\
|
||||
& = \sum_{n \in \beta, < k} \frac{2}{3^n} + \frac{2}{3^k} \\
|
||||
& < \sum_{n \in \beta, < k} \frac{2}{3^n} + \frac{2}{3^k} + \sum_{n \in \beta, > k} \frac{2}{3^n} \\
|
||||
& = f(\beta) \\ \\
|
||||
f(\alpha) < f(\beta) & \implies f(\alpha) \neq f(\beta)
|
||||
\end{align*}
|
||||
Then there is no surjection $\N \to \powerset{\N}$ and so $\powerset{\N}$ is uncountable.
|
||||
Since there's an injection $\powerset{\N} \to \R$, $\R$ is uncountable, as if $\R$ was countable, $\powerset{\N}$ would be countable
|
||||
\\ \\
|
||||
The set of all polynomials with rational coefficients is countable. Proof:
|
||||
|
||||
Let $P$ be the set of all polynomials with rational coefficients, $P_n$ be the set of all polynomials with rational coefficients and degree $\leq$ n.
|
||||
|
||||
Then $P = \bigcup_{n \in \N} P_n$, $\N$ is countable, and $P_n$ is countable as there exists a surjection $\Q^n \to P_n$ by assigning each element of the tuple to a coefficient. \\
|
||||
|
||||
\subsection*{Algebraic Numbers}
|
||||
The algebraic numbers ($\mathcal{A}$) are the real numbers which are roots of polynomials with rational coefficients.
|
||||
|
||||
$\mathcal{A}$ is countable, as \[ \mathcal{A} = \bigcup_{p \in P} \{ x \in \R |~p(x) = 0 \} \] is a countable union of finite sets. \\
|
||||
Then $\R\setminus\mathcal{A}$ is uncountable, as if it were, $\R = (\R \setminus \mathcal{A}) \cup \mathcal{A}$, a union of countable sets.
|
||||
\end{document}
|
||||
|
||||
1
MA2008/2024-09-24
Normal file
1
MA2008/2024-09-24
Normal file
@@ -0,0 +1 @@
|
||||
|
||||
76
MA2008/decls.tex
Normal file
76
MA2008/decls.tex
Normal file
@@ -0,0 +1,76 @@
|
||||
\documentclass[fleqn]{article}
|
||||
\usepackage{amsmath,amssymb,amsthm}
|
||||
\usepackage[margin=0.25in]{geometry}
|
||||
\usepackage{enumitem}
|
||||
\usepackage{systeme}
|
||||
\usepackage{mathtools}
|
||||
|
||||
\date{}
|
||||
\author{}
|
||||
|
||||
\newcommand{\paren}[1]{\left(#1\right)}
|
||||
\newcommand{\powerset}[1]{\mathcal{P}\paren{#1}}
|
||||
\renewcommand{\Re}[1]{\operatorname{\mathbb{R}e}\paren{#1}}
|
||||
\renewcommand{\Im}[1]{\operatorname{\mathbb{{I}}m}\paren{#1}}
|
||||
\newcommand{\C}{\mathbb{C}}
|
||||
\newcommand{\N}{\mathbb{N}}
|
||||
\newcommand{\Z}{\mathbb{Z}}
|
||||
\newcommand{\Q}{\mathbb{Q}}
|
||||
\newcommand{\R}{\mathbb{R}}
|
||||
\newcommand{\conj}[1]{\overline{#1}}
|
||||
\renewcommand{\mod}[1]{\left|#1\right|}
|
||||
\newcommand{\abs}[1]{\left|#1\right|}
|
||||
\newcommand{\polar}[2]{#1\paren{\cos{\paren{#2}} + i\sin{\paren{#2}}}}
|
||||
\newcommand{\adj}[1]{\operatorname{adj}#1}
|
||||
\newcommand{\card}[1]{\left|#1\right|}
|
||||
\newcommand{\littletaller}{\mathchoice{\vphantom{\big|}}{}{}{}}
|
||||
\newcommand{\restr}[2]{{% we make the whole thing an ordinary symbol
|
||||
\left.\kern-\nulldelimiterspace % automatically resize the bar with \right
|
||||
#1 % the function
|
||||
\littletaller % pretend it's a little taller at normal size
|
||||
\right|_{#2} % this is the delimiter
|
||||
}}
|
||||
|
||||
\makeatletter
|
||||
\renewcommand*{\env@matrix}[1][*\c@MaxMatrixCols c]{%
|
||||
\hskip -\arraycolsep
|
||||
\let\@ifnextchar\new@ifnextchar
|
||||
\array{#1}}
|
||||
\makeatother
|
||||
|
||||
|
||||
% https://gitlab.com/jim.hefferon/linear-algebra/-/blob/master/src/sty/linalgjh.sty
|
||||
\newlength{\grsteplength}
|
||||
\setlength{\grsteplength}{1.5ex plus .1ex minus .1ex}
|
||||
|
||||
\newcommand{\grstep}[2][\relax]{%
|
||||
\ensuremath{\mathrel{
|
||||
\hspace{\grsteplength}\mathop{\longrightarrow}\limits^{#2\mathstrut}_{
|
||||
\begin{subarray}{l} #1 \end{subarray}}\hspace{\grsteplength}}}}
|
||||
\newcommand{\repeatedgrstep}[2][\relax]{\hspace{-\grsteplength}\grstep[#1]{#2}}
|
||||
|
||||
\newcommand{\swap}{\leftrightarrow}
|
||||
|
||||
% https://tex.stackexchange.com/a/198806
|
||||
\makeatletter
|
||||
\newcommand{\subalign}[1]{%
|
||||
\vcenter{%
|
||||
\Let@ \restore@math@cr \default@tag
|
||||
\baselineskip\fontdimen10 \scriptfont\tw@
|
||||
\advance\baselineskip\fontdimen12 \scriptfont\tw@
|
||||
\lineskip\thr@@\fontdimen8 \scriptfont\thr@@
|
||||
\lineskiplimit\lineskip
|
||||
\ialign{\hfil$\m@th\scriptstyle##$&$\m@th\scriptstyle{}##$\hfil\crcr
|
||||
#1\crcr
|
||||
}%
|
||||
}%
|
||||
}
|
||||
\makeatother
|
||||
|
||||
\theoremstyle{definition}
|
||||
\newtheorem*{theorem}{Theorem}
|
||||
\newtheorem*{lemma}{Lemma}
|
||||
\newtheorem*{corollary}{Corollary}
|
||||
|
||||
\theoremstyle{remark}
|
||||
\newtheorem*{note}{Note}
|
||||
27
MA2008/linear-transforms.tex
Normal file
27
MA2008/linear-transforms.tex
Normal file
@@ -0,0 +1,27 @@
|
||||
\input{decls.tex}
|
||||
\title{Vector Spaces and Linear Transformations}
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
\begin{description}
|
||||
\item[Linear Transformation] A function $\phi: V \to W$ between vector spaces $V$ and $W$ (over some field $K$), such that
|
||||
\begin{align*}
|
||||
\phi(v + w) & \equiv \phi(v) + \phi(w) \\
|
||||
\phi(x \cdot v) & \equiv x \cdot \phi(v) \tag{For $x \in K$}
|
||||
\end{align*}
|
||||
\end{description}
|
||||
|
||||
Differentiation is a linear transformation.
|
||||
Solutions to $f'' + f = 0$ for function $f$ are a vector space.
|
||||
|
||||
\begin{theorem}
|
||||
For any scalars $\lambda, \mu \in \R$, there is a unique solution such that $f(0) = \mu$ and $f'(0) = \lambda$
|
||||
\end{theorem}
|
||||
The vector space is then two-dimensional, with basis $sin(x), cos(x)$
|
||||
|
||||
|
||||
\subsection*{}
|
||||
Vector spaces are used over finite fields in \emph{Algebraic Coding Theory}. The field is $\mathbb{F}_2 = \{0, 1\}$ - the integers mod 2.
|
||||
Binary strings of length $n$ are then a vector space over $\mathbb{F}_2^n$.
|
||||
ECC can be based on vector subspaces of $F_2^n$. (Vector subspaces are closed subsets of a vector space).
|
||||
\end{document}
|
||||
6
MA2008/tmpl.tex
Normal file
6
MA2008/tmpl.tex
Normal file
@@ -0,0 +1,6 @@
|
||||
\input{decls.tex}
|
||||
\title{}
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
\end{document}
|
||||
Reference in New Issue
Block a user