243 lines
6.1 KiB
TeX
243 lines
6.1 KiB
TeX
\input{decls.tex}
|
|
\title{Linear Algebra}
|
|
\begin{document}
|
|
\maketitle
|
|
\section*{Allowable Operations on a Linear System}
|
|
Solutions invariant.
|
|
\begin{itemize}
|
|
\item Multiply an equation by a non-zero scalar
|
|
\item Swap two equations
|
|
\item Add a multiple of one equation to another
|
|
\end{itemize}
|
|
\subsection*{Example}
|
|
\begin{align*}
|
|
&\systeme{
|
|
x - 2y + 2z = 6,
|
|
-x + 3y + 4z = 2,
|
|
2x + y - 2z = -2
|
|
}\\\\
|
|
E_2 & \implies E_2 + E_1 \\
|
|
E_3 & \implies E_3 + E_1 \\
|
|
&\systeme{
|
|
x - 2y + 2z = 6,
|
|
y + 6z = 8,
|
|
5y - 6z = -14
|
|
}\\\\
|
|
E_3 & \implies E_3 - 5E_2 \\
|
|
&\systeme{
|
|
x - 2y + 2z = 6,
|
|
y + 6z = 8,
|
|
z = \frac{3}{2}
|
|
}\\\\
|
|
E_1 & \implies E_1 - 2E_3 \\
|
|
E_2 & \implies E_2 - 6E_3 \\
|
|
&\systeme{
|
|
x - 2y = 3,
|
|
y = -1,
|
|
z = \frac{3}{2}
|
|
}\\\\
|
|
E_1 & \implies E_1 + 2E_2 \\
|
|
&\systeme{
|
|
x = 1,
|
|
y = -1,
|
|
z = \frac{3}{2}
|
|
}\\\\
|
|
\end{align*}
|
|
\section*{As Matrices}
|
|
\begin{align*}
|
|
\systeme{
|
|
x + 2y = 1,
|
|
2x - y = 3
|
|
}
|
|
\quad=\quad
|
|
\begin{pmatrix}[cc|c]
|
|
1 & 2 & 1 \\
|
|
2 & -1 & 3
|
|
\end{pmatrix}
|
|
& \systeme{
|
|
x - y + z = -2,
|
|
2x + 3y + z = 7,
|
|
x - 2y - z = -2
|
|
} \quad=\quad \begin{pmatrix}[ccc|c]
|
|
1 & -1 & 1 & -2 \\
|
|
2 & 3 & 1 & 7 \\
|
|
1 & -2 & -1 & -2
|
|
\end{pmatrix} \\
|
|
\grstep[R_3 - R_1]{R_2 - 2R_1} & \begin{pmatrix}[ccc|c]
|
|
1 & -1 & 1 & -2 \\
|
|
0 & 5 & -1 & 11 \\
|
|
0 & -1 & -2 & 0
|
|
\end{pmatrix} \\
|
|
\grstep{5R_3 + R_2} & \begin{pmatrix}[ccc|c]
|
|
1 & -1 & 1 & -2 \\
|
|
0 & 5 & -1 & 11 \\
|
|
0 & 0 & -11 & 11 \\
|
|
\end{pmatrix} \\
|
|
\grstep{-11^{-1}R_3} & \begin{pmatrix}[ccc|c]
|
|
1 & -1 & 1 & -2 \\
|
|
0 & 5 & -1 & 11 \\
|
|
0 & 0 & 1 & -1
|
|
\end{pmatrix} \\
|
|
\grstep[R_1 - R_3]{R_2 + R_3} & \begin{pmatrix}[ccc|c]
|
|
1 & -1 & 0 & -1 \\
|
|
0 & 5 & 0 & 10 \\
|
|
0 & 0 & 1 & -1
|
|
\end{pmatrix} \\&
|
|
\grstep{5^{-1}R_2} & \begin{pmatrix}[ccc|c]
|
|
1 & -1 & 0 & -1 \\
|
|
0 & 1 & 0 & 2 \\
|
|
0 & 0 & 1 & -1 \\
|
|
\end{pmatrix} \\
|
|
\grstep{R_1 + R_2} & \begin{pmatrix}[ccc|c]
|
|
1 & 0 & 0 & 1 \\
|
|
0 & 1 & 0 & 2 \\
|
|
0 & 0 & 1 & -1
|
|
\end{pmatrix} \\
|
|
= & \quad
|
|
\left\{
|
|
\subalign{
|
|
x & ~= ~1 \\
|
|
y & ~= ~2 \\
|
|
z & ~= ~-1
|
|
}
|
|
\right.
|
|
\end{align*}
|
|
\section*{Row-Echelon Form}
|
|
\begin{description}
|
|
\item[Row-Echelon Form] The leading entry in each row is 1 and is further to the right than the previous row's leading entry,
|
|
all 0 rows are at the end
|
|
\item[Reduced Row-Echelon Form] every other entry in a column containing a leading 1 is 0
|
|
\item[Theorem:] A matrix can be transformed to reduced row-echelon form using a finite number of allowable row operations
|
|
\end{description}
|
|
\subsection*{Example}
|
|
\begin{align*}
|
|
& \systeme{3x_1 + 2x_2 = 1,
|
|
x_1 - x_2 = 4,
|
|
2x_1 + x_2 = 5} = \begin{pmatrix}[cc|c]
|
|
3 & 2 & 1 \\
|
|
1 & -1 & 4 \\
|
|
2 & 1 & 5
|
|
\end{pmatrix} \\
|
|
\grstep{R_1\swap R_2} & \begin{pmatrix}[cc|c]
|
|
1 & -1 & 4 \\
|
|
3 & 2 & 1 \\
|
|
2 & 1 & 5
|
|
\end{pmatrix} \\
|
|
\grstep[R_2 - 3R_1]{R_3 - 2R_1} & \begin{pmatrix}[cc|c]
|
|
1 & -1 & 4 \\
|
|
0 & 5 & -11 \\
|
|
0 & 3 & -3
|
|
\end{pmatrix} \\
|
|
\grstep{5^{-1}R_2} & \begin{pmatrix}[cc|c]
|
|
1 & -1 & 4 \\
|
|
0 & 1 & \frac{-11}{5} \\
|
|
0 & 3 & -3
|
|
\end{pmatrix} \\
|
|
\grstep{R_3 - 2R_2} & \begin{pmatrix}[cc|c]
|
|
1 & -1 & 4 \\
|
|
0 & 1 & \frac{-11}{5} \\
|
|
0 & 0 & \frac{18}{5}
|
|
\end{pmatrix} \\
|
|
= & \systeme{
|
|
x_1 - x_2 = 4,
|
|
x_2 = \frac{-11}{5},
|
|
0x_1 + 0x_2 = \frac{18}{5}
|
|
}
|
|
\end{align*}
|
|
\begin{align*}
|
|
& \begin{pmatrix}[cccc|c]
|
|
1 & -1 & 1 & 1 & 6 \\
|
|
-1 & 1 & -2 & 1 & 3 \\
|
|
2 & 0 & 1 & 4 & 1 \\
|
|
\end{pmatrix} \\
|
|
\grstep[R_2 + R_1]{R_3 - 2R_1} & \begin{pmatrix}[cccc|c]
|
|
1 & -1 & 1 & 1 & 6 \\
|
|
0 & 0 & -1 & 2 & 9 \\
|
|
0 & 2 & -1 & 2 & -11
|
|
\end{pmatrix} \\
|
|
\grstep[R_2\swap R_3]{2^{-1}R_3} & \begin{pmatrix}[cccc|c]
|
|
1 & -1 & 1 & 1 & 6 \\
|
|
0 & 1 & \frac{1}{2} & 1 & \frac{-11}{2} \\
|
|
0 & 0 & -1 & 2 & 9 \\
|
|
\end{pmatrix} \\
|
|
\grstep[R_1 + R_3]{R_2 - 2^{-1}R_3} & \begin{pmatrix}[cccc|c]
|
|
1 & -1 & 0 & 3 & 15 \\
|
|
0 & 1 & 0 & 0 & -10 \\
|
|
0 & 0 & -1 & 2 & 9 \\
|
|
\end{pmatrix} \\
|
|
\grstep[-R_3]{R_1 + R_2} & \begin{pmatrix}[cccc|c]
|
|
1 & 0 & 0 & 3 & 15 \\
|
|
0 & 1 & 0 & 0 & -10 \\
|
|
0 & 0 & 1 & -2 & -9 \\
|
|
\end{pmatrix} \\
|
|
= & \systeme{
|
|
x_1 + 3x_4 = 5,
|
|
x_2 = -10,
|
|
x_3 - 2x_4 = -9
|
|
} \\
|
|
= & \left\{\substack{
|
|
x_1 = 5 - 3t \\
|
|
x_2 = -10 \\
|
|
x_3 = -9 + 2t
|
|
}\right.
|
|
\end{align*}
|
|
\section*{Determinants}
|
|
The determinant of a matrix is defined only for square matrices.
|
|
\[\det{A} \neq 0 \iff \exists \text{ a unique solution to the linear system represented by } A\]
|
|
Let
|
|
\[A = \begin{pmatrix}
|
|
a_{11} & a_{12} & a_{1n} \\
|
|
a_{21} & \ddots & \vdots \\
|
|
a_{31} & \ldots & a_{3n} \\
|
|
\end{pmatrix}
|
|
\]
|
|
\begin{description}
|
|
\item[$i, j$ minor of $A$] an $n$x$n$ matrix constructed by removing the $i^\text{th}$ row and $j^\text{th}$ column of $A$ \\
|
|
Denoted by $A_{ij}$
|
|
\end{description}
|
|
\begin{align*}
|
|
& \det{A} \text{ where } n = 1. = a_{11} \\
|
|
& \det{A} = a_{11}\det{A_{11}} - a_{12}\det{A_{12}} + ... + (-1)^{n+1}a_{1n} \tag{Laplace expansion of the first row} \\
|
|
& \qquad \text{or laplace expansion along other row or column}
|
|
\text{For } n = 2:& \\
|
|
& \det{A} = a_{11}\cdot a_{22} - a_{12}\cdot a_{21}
|
|
\end{align*}
|
|
\begin{description}
|
|
\item[Upper Triangular] lower left triangle is 0 - $d_{ij} = 0 \quad \forall{i > j}$
|
|
\item[Lower Triangular] upper right triangle is 0 - $d_{ij} = 0 \quad \forall{i < j}$
|
|
\item[Diagonal] only values on the diagonal - $d_{ij} = 0 \quad \forall{i \neq j}$ \\
|
|
$\det{A} = \prod^{N}_{i=0}~a_{ij} \forall~\text{ row-echelon }A$
|
|
\end{description}
|
|
\begin{itemize}
|
|
\item Multiplying a row of a square matrix $A$ by $r$ multiplies $\det{A}$ by $r$
|
|
\item Swapping two rows of a square matrix $A$ multiplies $\det{A}$ by $-1$
|
|
\item Adding a multiple of a row does not effect the determinant
|
|
\end{itemize}
|
|
\section*{Transposition}
|
|
\begin{description}
|
|
\item[$A^T$] $a^T_{ij} = a_{ji}~ \forall~i,j$
|
|
\end{description}
|
|
Note: $\det{A} = \det{A^T}~\forall~A$
|
|
\section*{Matrix Multiplication}
|
|
LHS has columns $=$ rows of RHS
|
|
It's the cartesian product
|
|
\[A\times B = (a_{i1}b_{j1} + a_{i2}b_{2j} + \ldots + a_{im}b_{mj})_{ij}\]
|
|
\begin{align*}
|
|
\begin{pmatrix}[c|c|c]
|
|
2 & 1 + 1 & 3 + 6 \\
|
|
4(2) & 4 + 1 & 3(4) + 6 \\
|
|
0 & 2 & 2(6) \\
|
|
\end{pmatrix} = \begin{pmatrix}
|
|
2 & 2 & 9 \\
|
|
8 & 5 & 18 \\
|
|
0 & 2 & 12
|
|
\end{pmatrix}
|
|
\end{align*}
|
|
\begin{align*}
|
|
\begin{pmatrix}1 \\ 2 \\ 3 \end{pmatrix}\begin{pmatrix}1 & 2 & 3 & 4\end{pmatrix} + \begin{pmatrix}
|
|
1 & 2 & 3 & 4 \\
|
|
5 & 6 & 7 & 8 \\
|
|
9 & 10 & 11 & 12 \\
|
|
\end{pmatrix}
|
|
\end{align*}
|
|
\end{document} |